Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294536831> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4294536831 endingPage "73" @default.
- W4294536831 startingPage "65" @default.
- W4294536831 abstract "In this paper we propose different FPGA implementations of a Convolutional Neural Network where the use case is to detect road cracks via images. The work is based on the network proposed by the current state of the art in the field. We deploy the network using the MATLAB Deep Learning HDL toolbox on all available AMD-Xilinx platforms, including different data types. In particular, we use the ZC706 and ZCU102 development boards. In order to infer the CNN, we apply a single precision and an 8-bit integer data type quantization. The implementation results show that the detection accuracy of 99.6% is the same of the state of the art, even though the network is quantized. We also obtain a speed-up of the CNN reaching up to 313.2 Frames Per Second while requiring only 45.85 mJ to process one frame. The proposed implementations are therefore a viable solution for a fast and low-power crack detection system." @default.
- W4294536831 created "2022-09-03" @default.
- W4294536831 creator A5000963583 @default.
- W4294536831 creator A5028297120 @default.
- W4294536831 creator A5044774713 @default.
- W4294536831 creator A5048482308 @default.
- W4294536831 creator A5055130345 @default.
- W4294536831 creator A5063300969 @default.
- W4294536831 date "2022-09-04" @default.
- W4294536831 modified "2023-10-18" @default.
- W4294536831 title "FPGA-Based Road Crack Detection Using Deep Learning" @default.
- W4294536831 cites W1995130521 @default.
- W4294536831 cites W2511065100 @default.
- W4294536831 cites W2885146443 @default.
- W4294536831 cites W2896969435 @default.
- W4294536831 cites W2919341207 @default.
- W4294536831 cites W2970332685 @default.
- W4294536831 cites W2979947699 @default.
- W4294536831 cites W3094121892 @default.
- W4294536831 cites W3183327882 @default.
- W4294536831 cites W4200327273 @default.
- W4294536831 cites W4211201689 @default.
- W4294536831 cites W4285028573 @default.
- W4294536831 doi "https://doi.org/10.1007/978-3-031-16281-7_7" @default.
- W4294536831 hasPublicationYear "2022" @default.
- W4294536831 type Work @default.
- W4294536831 citedByCount "1" @default.
- W4294536831 crossrefType "book-chapter" @default.
- W4294536831 hasAuthorship W4294536831A5000963583 @default.
- W4294536831 hasAuthorship W4294536831A5028297120 @default.
- W4294536831 hasAuthorship W4294536831A5044774713 @default.
- W4294536831 hasAuthorship W4294536831A5048482308 @default.
- W4294536831 hasAuthorship W4294536831A5055130345 @default.
- W4294536831 hasAuthorship W4294536831A5063300969 @default.
- W4294536831 hasConcept C108583219 @default.
- W4294536831 hasConcept C111919701 @default.
- W4294536831 hasConcept C113775141 @default.
- W4294536831 hasConcept C149635348 @default.
- W4294536831 hasConcept C154945302 @default.
- W4294536831 hasConcept C199360897 @default.
- W4294536831 hasConcept C26713055 @default.
- W4294536831 hasConcept C2777655017 @default.
- W4294536831 hasConcept C2780365114 @default.
- W4294536831 hasConcept C28855332 @default.
- W4294536831 hasConcept C31972630 @default.
- W4294536831 hasConcept C3261483 @default.
- W4294536831 hasConcept C41008148 @default.
- W4294536831 hasConcept C42935608 @default.
- W4294536831 hasConcept C50644808 @default.
- W4294536831 hasConcept C79403827 @default.
- W4294536831 hasConcept C81363708 @default.
- W4294536831 hasConceptScore W4294536831C108583219 @default.
- W4294536831 hasConceptScore W4294536831C111919701 @default.
- W4294536831 hasConceptScore W4294536831C113775141 @default.
- W4294536831 hasConceptScore W4294536831C149635348 @default.
- W4294536831 hasConceptScore W4294536831C154945302 @default.
- W4294536831 hasConceptScore W4294536831C199360897 @default.
- W4294536831 hasConceptScore W4294536831C26713055 @default.
- W4294536831 hasConceptScore W4294536831C2777655017 @default.
- W4294536831 hasConceptScore W4294536831C2780365114 @default.
- W4294536831 hasConceptScore W4294536831C28855332 @default.
- W4294536831 hasConceptScore W4294536831C31972630 @default.
- W4294536831 hasConceptScore W4294536831C3261483 @default.
- W4294536831 hasConceptScore W4294536831C41008148 @default.
- W4294536831 hasConceptScore W4294536831C42935608 @default.
- W4294536831 hasConceptScore W4294536831C50644808 @default.
- W4294536831 hasConceptScore W4294536831C79403827 @default.
- W4294536831 hasConceptScore W4294536831C81363708 @default.
- W4294536831 hasLocation W42945368311 @default.
- W4294536831 hasOpenAccess W4294536831 @default.
- W4294536831 hasPrimaryLocation W42945368311 @default.
- W4294536831 hasRelatedWork W2358894762 @default.
- W4294536831 hasRelatedWork W2379198188 @default.
- W4294536831 hasRelatedWork W2731899572 @default.
- W4294536831 hasRelatedWork W2999805992 @default.
- W4294536831 hasRelatedWork W3116150086 @default.
- W4294536831 hasRelatedWork W3133861977 @default.
- W4294536831 hasRelatedWork W4200173597 @default.
- W4294536831 hasRelatedWork W4312417841 @default.
- W4294536831 hasRelatedWork W4321369474 @default.
- W4294536831 hasRelatedWork W2117319800 @default.
- W4294536831 isParatext "false" @default.
- W4294536831 isRetracted "false" @default.
- W4294536831 workType "book-chapter" @default.