Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294560071> ?p ?o ?g. }
- W4294560071 endingPage "148" @default.
- W4294560071 startingPage "148" @default.
- W4294560071 abstract "Granular Computing is a powerful information processing paradigm, particularly useful for the synthesis of pattern recognition systems in structured domains (e.g., graphs or sequences). According to this paradigm, granules of information play the pivotal role of describing the underlying (possibly complex) process, starting from the available data. Under a pattern recognition viewpoint, granules of information can be exploited for the synthesis of semantically sound embedding spaces, where common supervised or unsupervised problems can be solved via standard machine learning algorithms. In this work, we show a comparison between different strategies for the automatic synthesis of information granules in the context of graph classification. These strategies mainly differ on the specific topology adopted for subgraphs considered as candidate information granules and the possibility of using or neglecting the ground-truth class labels in the granulation process. Computational results on 10 different open-access datasets show that by using a class-aware granulation, performances tend to improve (regardless of the information granules topology), counterbalanced by a possibly higher number of information granules." @default.
- W4294560071 created "2022-09-04" @default.
- W4294560071 creator A5012156296 @default.
- W4294560071 creator A5025282612 @default.
- W4294560071 creator A5073847581 @default.
- W4294560071 date "2022-04-27" @default.
- W4294560071 modified "2023-09-30" @default.
- W4294560071 title "On Information Granulation via Data Clustering for Granular Computing-Based Pattern Recognition: A Graph Embedding Case Study" @default.
- W4294560071 cites W1081706099 @default.
- W4294560071 cites W1595159159 @default.
- W4294560071 cites W1727182467 @default.
- W4294560071 cites W1970871468 @default.
- W4294560071 cites W1977340881 @default.
- W4294560071 cites W1981299568 @default.
- W4294560071 cites W1983681808 @default.
- W4294560071 cites W1992419399 @default.
- W4294560071 cites W2002096154 @default.
- W4294560071 cites W2007240678 @default.
- W4294560071 cites W2008857988 @default.
- W4294560071 cites W2010541316 @default.
- W4294560071 cites W2013568176 @default.
- W4294560071 cites W2017844419 @default.
- W4294560071 cites W2018113971 @default.
- W4294560071 cites W2038384345 @default.
- W4294560071 cites W2045293735 @default.
- W4294560071 cites W2056562706 @default.
- W4294560071 cites W2058413069 @default.
- W4294560071 cites W2059822086 @default.
- W4294560071 cites W2092750499 @default.
- W4294560071 cites W2099438806 @default.
- W4294560071 cites W2111563706 @default.
- W4294560071 cites W2114832876 @default.
- W4294560071 cites W2116007667 @default.
- W4294560071 cites W2122111042 @default.
- W4294560071 cites W2136647665 @default.
- W4294560071 cites W2140288353 @default.
- W4294560071 cites W2144000913 @default.
- W4294560071 cites W2153233077 @default.
- W4294560071 cites W2153676086 @default.
- W4294560071 cites W2165094119 @default.
- W4294560071 cites W2170607286 @default.
- W4294560071 cites W2232548815 @default.
- W4294560071 cites W2331687785 @default.
- W4294560071 cites W2340494682 @default.
- W4294560071 cites W2411187089 @default.
- W4294560071 cites W2534449155 @default.
- W4294560071 cites W2539989325 @default.
- W4294560071 cites W2786666498 @default.
- W4294560071 cites W2800629944 @default.
- W4294560071 cites W2963066159 @default.
- W4294560071 cites W2977791469 @default.
- W4294560071 cites W2981765957 @default.
- W4294560071 cites W3089941542 @default.
- W4294560071 cites W3093061098 @default.
- W4294560071 cites W3103145119 @default.
- W4294560071 cites W3125464319 @default.
- W4294560071 cites W3144386677 @default.
- W4294560071 cites W3178436480 @default.
- W4294560071 cites W3184300732 @default.
- W4294560071 cites W3211194832 @default.
- W4294560071 cites W4255833381 @default.
- W4294560071 cites W81602814 @default.
- W4294560071 doi "https://doi.org/10.3390/a15050148" @default.
- W4294560071 hasPublicationYear "2022" @default.
- W4294560071 type Work @default.
- W4294560071 citedByCount "5" @default.
- W4294560071 countsByYear W42945600712022 @default.
- W4294560071 countsByYear W42945600712023 @default.
- W4294560071 crossrefType "journal-article" @default.
- W4294560071 hasAuthorship W4294560071A5012156296 @default.
- W4294560071 hasAuthorship W4294560071A5025282612 @default.
- W4294560071 hasAuthorship W4294560071A5073847581 @default.
- W4294560071 hasBestOaLocation W42945600711 @default.
- W4294560071 hasConcept C111012933 @default.
- W4294560071 hasConcept C114614502 @default.
- W4294560071 hasConcept C121332964 @default.
- W4294560071 hasConcept C124101348 @default.
- W4294560071 hasConcept C132525143 @default.
- W4294560071 hasConcept C146849305 @default.
- W4294560071 hasConcept C151730666 @default.
- W4294560071 hasConcept C153180895 @default.
- W4294560071 hasConcept C154945302 @default.
- W4294560071 hasConcept C17209119 @default.
- W4294560071 hasConcept C184720557 @default.
- W4294560071 hasConcept C2777212361 @default.
- W4294560071 hasConcept C2779343474 @default.
- W4294560071 hasConcept C33923547 @default.
- W4294560071 hasConcept C41008148 @default.
- W4294560071 hasConcept C41608201 @default.
- W4294560071 hasConcept C73555534 @default.
- W4294560071 hasConcept C74650414 @default.
- W4294560071 hasConcept C75564084 @default.
- W4294560071 hasConcept C80444323 @default.
- W4294560071 hasConcept C86803240 @default.
- W4294560071 hasConcept C88463166 @default.
- W4294560071 hasConceptScore W4294560071C111012933 @default.
- W4294560071 hasConceptScore W4294560071C114614502 @default.
- W4294560071 hasConceptScore W4294560071C121332964 @default.