Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294562155> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W4294562155 abstract "We prove a maximal Fourier restriction theorem for the sphere $mathbb{S}^{d-1}$ in $mathbb{R}^{d}$ for any dimension $dgeq 3$ in a restricted range of exponents given by the Stein-Tomas theorem. The proof consists of a simple observation. When $d=3$ the range corresponds exactly to the full Stein-Tomas one, but is otherwise a proper subset when $d>3$. We also present an application regarding the Lebesgue points of functions in $mathcal{F}(L^p)$ when $p$ is sufficiently close to 1." @default.
- W4294562155 created "2022-09-04" @default.
- W4294562155 creator A5066052412 @default.
- W4294562155 date "2017-03-28" @default.
- W4294562155 modified "2023-09-25" @default.
- W4294562155 title "A note on maximal Fourier Restriction for spheres in all dimensions" @default.
- W4294562155 doi "https://doi.org/10.48550/arxiv.1703.09495" @default.
- W4294562155 hasPublicationYear "2017" @default.
- W4294562155 type Work @default.
- W4294562155 citedByCount "0" @default.
- W4294562155 crossrefType "posted-content" @default.
- W4294562155 hasAuthorship W4294562155A5066052412 @default.
- W4294562155 hasBestOaLocation W42945621551 @default.
- W4294562155 hasConcept C102519508 @default.
- W4294562155 hasConcept C111472728 @default.
- W4294562155 hasConcept C114614502 @default.
- W4294562155 hasConcept C121332964 @default.
- W4294562155 hasConcept C1276947 @default.
- W4294562155 hasConcept C134306372 @default.
- W4294562155 hasConcept C138885662 @default.
- W4294562155 hasConcept C14158598 @default.
- W4294562155 hasConcept C159985019 @default.
- W4294562155 hasConcept C192562407 @default.
- W4294562155 hasConcept C203024314 @default.
- W4294562155 hasConcept C204323151 @default.
- W4294562155 hasConcept C2780586882 @default.
- W4294562155 hasConcept C33676613 @default.
- W4294562155 hasConcept C33923547 @default.
- W4294562155 hasConcept C72422203 @default.
- W4294562155 hasConceptScore W4294562155C102519508 @default.
- W4294562155 hasConceptScore W4294562155C111472728 @default.
- W4294562155 hasConceptScore W4294562155C114614502 @default.
- W4294562155 hasConceptScore W4294562155C121332964 @default.
- W4294562155 hasConceptScore W4294562155C1276947 @default.
- W4294562155 hasConceptScore W4294562155C134306372 @default.
- W4294562155 hasConceptScore W4294562155C138885662 @default.
- W4294562155 hasConceptScore W4294562155C14158598 @default.
- W4294562155 hasConceptScore W4294562155C159985019 @default.
- W4294562155 hasConceptScore W4294562155C192562407 @default.
- W4294562155 hasConceptScore W4294562155C203024314 @default.
- W4294562155 hasConceptScore W4294562155C204323151 @default.
- W4294562155 hasConceptScore W4294562155C2780586882 @default.
- W4294562155 hasConceptScore W4294562155C33676613 @default.
- W4294562155 hasConceptScore W4294562155C33923547 @default.
- W4294562155 hasConceptScore W4294562155C72422203 @default.
- W4294562155 hasLocation W42945621551 @default.
- W4294562155 hasOpenAccess W4294562155 @default.
- W4294562155 hasPrimaryLocation W42945621551 @default.
- W4294562155 hasRelatedWork W1595444631 @default.
- W4294562155 hasRelatedWork W2024563437 @default.
- W4294562155 hasRelatedWork W2062605298 @default.
- W4294562155 hasRelatedWork W2243579221 @default.
- W4294562155 hasRelatedWork W2736215910 @default.
- W4294562155 hasRelatedWork W2950792356 @default.
- W4294562155 hasRelatedWork W2964285269 @default.
- W4294562155 hasRelatedWork W3136117170 @default.
- W4294562155 hasRelatedWork W4294562155 @default.
- W4294562155 hasRelatedWork W4297951491 @default.
- W4294562155 isParatext "false" @default.
- W4294562155 isRetracted "false" @default.
- W4294562155 workType "article" @default.