Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294612778> ?p ?o ?g. }
- W4294612778 endingPage "101547" @default.
- W4294612778 startingPage "101547" @default.
- W4294612778 abstract "In this study, highly accurate particulate matter (PM10 and PM2.5) predictions were obtained using meteorological prediction data from the local data assimilation and prediction system (LDAPS) and tree-based machine learning (ML). The study area was Seoul, South Korea, and data from July 2018 to June 2021 as well as LDAPS 36-h predictions with 1-h intervals 4 times a day were used. The predicted PM values were then compared with the observed PM measurements to evaluate the prediction accuracy. The PM prediction performance of the Community Multi-Scale Air Quality (CMAQ)-based chemical transport model (CTM) was compared with that reported by this study. The experimental results report that, among tree-based ML algorithms, light gradient boosting (LGB) is the most suitable for PM prediction. The PM prediction results of the LGB algorithm for the hourly test data were: bias = −0.10 μg/m3, root mean square error (RMSE) = 13.15 μg/m3, and R2 = 0.86 for PM10 and bias = −0.02 μg/m3, RMSE = 7.48 μg/m3, and R2 = 0.83 for PM2.5, and for daily mean were: RMSE ≤1.16 μg/m3 and R2 = 0.996. The relative RMSE (%RMSE) is 21% lower than the results of the CTM model, and R2 is 0.20 higher. Even in the high PM concentration case prediction results, the algorithm showed good predictive performance with %RMSE = 8.91%–20.43% and R2 = 0.89–0.97. Therefore, in addition to the CTM, high-accuracy PM prediction results using ML can also be used for air quality monitoring and improvement." @default.
- W4294612778 created "2022-09-05" @default.
- W4294612778 creator A5058223517 @default.
- W4294612778 creator A5073142212 @default.
- W4294612778 creator A5076358093 @default.
- W4294612778 date "2022-10-01" @default.
- W4294612778 modified "2023-10-18" @default.
- W4294612778 title "Short-term prediction of particulate matter (PM10 and PM2.5) in Seoul, South Korea using tree-based machine learning algorithms" @default.
- W4294612778 cites W1678356000 @default.
- W4294612778 cites W1981290067 @default.
- W4294612778 cites W2004688891 @default.
- W4294612778 cites W2076084454 @default.
- W4294612778 cites W2084288422 @default.
- W4294612778 cites W2267076517 @default.
- W4294612778 cites W2326797628 @default.
- W4294612778 cites W2553839055 @default.
- W4294612778 cites W2562750728 @default.
- W4294612778 cites W2570322979 @default.
- W4294612778 cites W2588978790 @default.
- W4294612778 cites W2606297425 @default.
- W4294612778 cites W2615382655 @default.
- W4294612778 cites W2799743459 @default.
- W4294612778 cites W2800133189 @default.
- W4294612778 cites W2813865948 @default.
- W4294612778 cites W2929532340 @default.
- W4294612778 cites W2935986185 @default.
- W4294612778 cites W2942640134 @default.
- W4294612778 cites W2951501140 @default.
- W4294612778 cites W2954182065 @default.
- W4294612778 cites W2954482899 @default.
- W4294612778 cites W2955406391 @default.
- W4294612778 cites W2965136063 @default.
- W4294612778 cites W2975798903 @default.
- W4294612778 cites W2994402765 @default.
- W4294612778 cites W2997627304 @default.
- W4294612778 cites W2999632029 @default.
- W4294612778 cites W3000276034 @default.
- W4294612778 cites W3006101764 @default.
- W4294612778 cites W3011200639 @default.
- W4294612778 cites W3014676873 @default.
- W4294612778 cites W3022527047 @default.
- W4294612778 cites W3026256882 @default.
- W4294612778 cites W3032998454 @default.
- W4294612778 cites W3033154016 @default.
- W4294612778 cites W3066506809 @default.
- W4294612778 cites W3083153194 @default.
- W4294612778 cites W3092631889 @default.
- W4294612778 cites W3102027041 @default.
- W4294612778 cites W3119987766 @default.
- W4294612778 cites W3120307210 @default.
- W4294612778 cites W3136326994 @default.
- W4294612778 cites W3147233169 @default.
- W4294612778 cites W3159834735 @default.
- W4294612778 cites W3180351267 @default.
- W4294612778 cites W3181720015 @default.
- W4294612778 cites W3206237479 @default.
- W4294612778 cites W3210634346 @default.
- W4294612778 cites W4214574221 @default.
- W4294612778 cites W4224062655 @default.
- W4294612778 cites W4289756562 @default.
- W4294612778 doi "https://doi.org/10.1016/j.apr.2022.101547" @default.
- W4294612778 hasPublicationYear "2022" @default.
- W4294612778 type Work @default.
- W4294612778 citedByCount "20" @default.
- W4294612778 countsByYear W42946127782022 @default.
- W4294612778 countsByYear W42946127782023 @default.
- W4294612778 crossrefType "journal-article" @default.
- W4294612778 hasAuthorship W4294612778A5058223517 @default.
- W4294612778 hasAuthorship W4294612778A5073142212 @default.
- W4294612778 hasAuthorship W4294612778A5076358093 @default.
- W4294612778 hasBestOaLocation W42946127781 @default.
- W4294612778 hasConcept C105795698 @default.
- W4294612778 hasConcept C11413529 @default.
- W4294612778 hasConcept C119857082 @default.
- W4294612778 hasConcept C126314574 @default.
- W4294612778 hasConcept C139945424 @default.
- W4294612778 hasConcept C153294291 @default.
- W4294612778 hasConcept C169258074 @default.
- W4294612778 hasConcept C178790620 @default.
- W4294612778 hasConcept C185592680 @default.
- W4294612778 hasConcept C205649164 @default.
- W4294612778 hasConcept C24245907 @default.
- W4294612778 hasConcept C2776845762 @default.
- W4294612778 hasConcept C33923547 @default.
- W4294612778 hasConcept C41008148 @default.
- W4294612778 hasConcept C70153297 @default.
- W4294612778 hasConceptScore W4294612778C105795698 @default.
- W4294612778 hasConceptScore W4294612778C11413529 @default.
- W4294612778 hasConceptScore W4294612778C119857082 @default.
- W4294612778 hasConceptScore W4294612778C126314574 @default.
- W4294612778 hasConceptScore W4294612778C139945424 @default.
- W4294612778 hasConceptScore W4294612778C153294291 @default.
- W4294612778 hasConceptScore W4294612778C169258074 @default.
- W4294612778 hasConceptScore W4294612778C178790620 @default.
- W4294612778 hasConceptScore W4294612778C185592680 @default.
- W4294612778 hasConceptScore W4294612778C205649164 @default.
- W4294612778 hasConceptScore W4294612778C24245907 @default.
- W4294612778 hasConceptScore W4294612778C2776845762 @default.