Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294613142> ?p ?o ?g. }
- W4294613142 abstract "Phenomic prediction has been defined as an alternative to genomic prediction by using spectra instead of molecular markers. A reflectance spectrum provides information on the biochemical composition within a tissue, itself being under genetic determinism. Thus, a relationship matrix built from spectra could potentially capture genetic signal. This new methodology has been mainly applied in several annual crop species but little is known so far about its interest in perennial species. Besides, phenomic prediction has only been tested for a restricted set of traits, mainly related to yield or phenology. This study aims at applying phenomic prediction for the first time in grapevine, using spectra collected on two tissues and over two consecutive years, on two populations and for 15 traits, related to berry composition, phenology, morphological and vigour. A major novelty of this study was to collect spectra and phenotypes several years apart from each other. First, we characterized the genetic signal in spectra and under which condition it could be maximized, then phenomic predictive ability was compared to genomic predictive ability.For the first time, we showed that the similarity between spectra and genomic relationship matrices was stable across tissues or years, but variable across populations, with co-inertia around 0.3 and 0.6 for diversity panel and half-diallel populations, respectively. Applying a mixed model on spectra data increased phenomic predictive ability, while using spectra collected on wood or leaves from one year or another had less impact. Differences between populations were also observed for predictive ability of phenomic prediction, with an average of 0.27 for the diversity panel and 0.35 for the half-diallel. For both populations, a significant positive correlation was found across traits between predictive ability of genomic and phenomic predictions.NIRS is a new low-cost alternative to genotyping for predicting complex traits in perennial species such as grapevine. Having spectra and phenotypes from different years allowed us to exclude genotype-by-environment interactions and confirms that phenomic prediction can rely only on genetics." @default.
- W4294613142 created "2022-09-05" @default.
- W4294613142 creator A5000382317 @default.
- W4294613142 creator A5012361681 @default.
- W4294613142 creator A5031967432 @default.
- W4294613142 creator A5033372607 @default.
- W4294613142 creator A5042790280 @default.
- W4294613142 creator A5050160801 @default.
- W4294613142 creator A5051104895 @default.
- W4294613142 creator A5063347296 @default.
- W4294613142 creator A5069642577 @default.
- W4294613142 creator A5070676559 @default.
- W4294613142 creator A5077221181 @default.
- W4294613142 creator A5084956326 @default.
- W4294613142 creator A5090787281 @default.
- W4294613142 date "2022-09-05" @default.
- W4294613142 modified "2023-10-16" @default.
- W4294613142 title "Interest of phenomic prediction as an alternative to genomic prediction in grapevine" @default.
- W4294613142 cites W1928998639 @default.
- W4294613142 cites W1976575447 @default.
- W4294613142 cites W1999398820 @default.
- W4294613142 cites W2016090370 @default.
- W4294613142 cites W2036700326 @default.
- W4294613142 cites W2076616438 @default.
- W4294613142 cites W2097360283 @default.
- W4294613142 cites W2109606373 @default.
- W4294613142 cites W2130916293 @default.
- W4294613142 cites W2159474015 @default.
- W4294613142 cites W2170376772 @default.
- W4294613142 cites W2304638492 @default.
- W4294613142 cites W2562063914 @default.
- W4294613142 cites W2785291720 @default.
- W4294613142 cites W2888879924 @default.
- W4294613142 cites W2940511043 @default.
- W4294613142 cites W2943819041 @default.
- W4294613142 cites W2951831261 @default.
- W4294613142 cites W2952277607 @default.
- W4294613142 cites W29779864 @default.
- W4294613142 cites W3003582302 @default.
- W4294613142 cites W3015700750 @default.
- W4294613142 cites W3042780372 @default.
- W4294613142 cites W3129428231 @default.
- W4294613142 cites W3175257022 @default.
- W4294613142 cites W3192203584 @default.
- W4294613142 cites W4205139899 @default.
- W4294613142 cites W4225134081 @default.
- W4294613142 cites W4225785147 @default.
- W4294613142 cites W4294541781 @default.
- W4294613142 doi "https://doi.org/10.1186/s13007-022-00940-9" @default.
- W4294613142 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36064570" @default.
- W4294613142 hasPublicationYear "2022" @default.
- W4294613142 type Work @default.
- W4294613142 citedByCount "7" @default.
- W4294613142 countsByYear W42946131422022 @default.
- W4294613142 countsByYear W42946131422023 @default.
- W4294613142 crossrefType "journal-article" @default.
- W4294613142 hasAuthorship W4294613142A5000382317 @default.
- W4294613142 hasAuthorship W4294613142A5012361681 @default.
- W4294613142 hasAuthorship W4294613142A5031967432 @default.
- W4294613142 hasAuthorship W4294613142A5033372607 @default.
- W4294613142 hasAuthorship W4294613142A5042790280 @default.
- W4294613142 hasAuthorship W4294613142A5050160801 @default.
- W4294613142 hasAuthorship W4294613142A5051104895 @default.
- W4294613142 hasAuthorship W4294613142A5063347296 @default.
- W4294613142 hasAuthorship W4294613142A5069642577 @default.
- W4294613142 hasAuthorship W4294613142A5070676559 @default.
- W4294613142 hasAuthorship W4294613142A5077221181 @default.
- W4294613142 hasAuthorship W4294613142A5084956326 @default.
- W4294613142 hasAuthorship W4294613142A5090787281 @default.
- W4294613142 hasBestOaLocation W42946131421 @default.
- W4294613142 hasConcept C105795698 @default.
- W4294613142 hasConcept C161890455 @default.
- W4294613142 hasConcept C18903297 @default.
- W4294613142 hasConcept C33923547 @default.
- W4294613142 hasConcept C45804977 @default.
- W4294613142 hasConcept C51417038 @default.
- W4294613142 hasConcept C78458016 @default.
- W4294613142 hasConcept C86803240 @default.
- W4294613142 hasConceptScore W4294613142C105795698 @default.
- W4294613142 hasConceptScore W4294613142C161890455 @default.
- W4294613142 hasConceptScore W4294613142C18903297 @default.
- W4294613142 hasConceptScore W4294613142C33923547 @default.
- W4294613142 hasConceptScore W4294613142C45804977 @default.
- W4294613142 hasConceptScore W4294613142C51417038 @default.
- W4294613142 hasConceptScore W4294613142C78458016 @default.
- W4294613142 hasConceptScore W4294613142C86803240 @default.
- W4294613142 hasFunder F4320321663 @default.
- W4294613142 hasFunder F4320326752 @default.
- W4294613142 hasIssue "1" @default.
- W4294613142 hasLocation W42946131421 @default.
- W4294613142 hasLocation W429461314210 @default.
- W4294613142 hasLocation W429461314211 @default.
- W4294613142 hasLocation W42946131422 @default.
- W4294613142 hasLocation W42946131423 @default.
- W4294613142 hasLocation W42946131424 @default.
- W4294613142 hasLocation W42946131425 @default.
- W4294613142 hasLocation W42946131426 @default.
- W4294613142 hasLocation W42946131427 @default.
- W4294613142 hasLocation W42946131428 @default.
- W4294613142 hasLocation W42946131429 @default.