Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294636662> ?p ?o ?g. }
- W4294636662 abstract "Fast and accurate outlining of the organs at risk (OARs) and high-risk clinical tumor volume (HRCTV) is especially important in high-dose-rate brachytherapy due to the highly time-intensive online treatment planning process and the high dose gradient around the HRCTV. This study aims to apply a self-configured ensemble method for fast and reproducible auto-segmentation of OARs and HRCTVs in gynecological cancer.We applied nnU-Net (no new U-Net), an automatically adapted deep convolutional neural network based on U-Net, to segment the bladder, rectum and HRCTV on CT images in gynecological cancer. In nnU-Net, three architectures, including 2D U-Net, 3D U-Net and 3D-Cascade U-Net, were trained and finally ensembled. 207 cases were randomly chosen for training, and 30 for testing. Quantitative evaluation used well-established image segmentation metrics, including dice similarity coefficient (DSC), 95% Hausdorff distance (HD95%), and average surface distance (ASD). Qualitative analysis of automated segmentation results was performed visually by two radiation oncologists. The dosimetric evaluation was performed by comparing the dose-volume parameters of both predicted segmentation and human contouring.nnU-Net obtained high qualitative and quantitative segmentation accuracy on the test dataset and performed better than previously reported methods in bladder and rectum segmentation. In quantitative evaluation, 3D-Cascade achieved the best performance in the bladder (DSC: 0.936 ± 0.051, HD95%: 3.503 ± 1.956, ASD: 0.944 ± 0.503), rectum (DSC: 0.831 ± 0.074, HD95%: 7.579 ± 5.857, ASD: 3.6 ± 3.485), and HRCTV (DSC: 0.836 ± 0.07, HD95%: 7.42 ± 5.023, ASD: 2.094 ± 1.311). According to the qualitative evaluation, over 76% of the test data set had no or minor visually detectable errors in segmentation.This work showed nnU-Net's superiority in segmenting OARs and HRCTV in gynecological brachytherapy cases in our center, among which 3D-Cascade shows the highest accuracy in segmentation across different applicators and patient anatomy." @default.
- W4294636662 created "2022-09-05" @default.
- W4294636662 creator A5003515419 @default.
- W4294636662 creator A5006175077 @default.
- W4294636662 creator A5010444377 @default.
- W4294636662 creator A5030009997 @default.
- W4294636662 creator A5072964829 @default.
- W4294636662 creator A5077660882 @default.
- W4294636662 date "2022-09-05" @default.
- W4294636662 modified "2023-09-23" @default.
- W4294636662 title "A deep learning-based self-adapting ensemble method for segmentation in gynecological brachytherapy" @default.
- W4294636662 cites W127971855 @default.
- W4294636662 cites W1909740415 @default.
- W4294636662 cites W2013239977 @default.
- W4294636662 cites W2036158460 @default.
- W4294636662 cites W2062077520 @default.
- W4294636662 cites W2086604707 @default.
- W4294636662 cites W2103683686 @default.
- W4294636662 cites W2156281133 @default.
- W4294636662 cites W2194458463 @default.
- W4294636662 cites W2194775991 @default.
- W4294636662 cites W2346193779 @default.
- W4294636662 cites W2474824655 @default.
- W4294636662 cites W2526009326 @default.
- W4294636662 cites W2594600577 @default.
- W4294636662 cites W2739807629 @default.
- W4294636662 cites W2750023899 @default.
- W4294636662 cites W2773960327 @default.
- W4294636662 cites W2783123637 @default.
- W4294636662 cites W2790405452 @default.
- W4294636662 cites W2792124446 @default.
- W4294636662 cites W2806287797 @default.
- W4294636662 cites W2884436604 @default.
- W4294636662 cites W2884696800 @default.
- W4294636662 cites W2899504919 @default.
- W4294636662 cites W2903814341 @default.
- W4294636662 cites W2906196686 @default.
- W4294636662 cites W2963446712 @default.
- W4294636662 cites W2982147221 @default.
- W4294636662 cites W2999484173 @default.
- W4294636662 cites W3006585477 @default.
- W4294636662 cites W3027961002 @default.
- W4294636662 cites W3038924779 @default.
- W4294636662 cites W3043756267 @default.
- W4294636662 cites W3089117938 @default.
- W4294636662 cites W3089747280 @default.
- W4294636662 cites W3106713416 @default.
- W4294636662 cites W3108411134 @default.
- W4294636662 cites W3108411643 @default.
- W4294636662 cites W3111654754 @default.
- W4294636662 cites W3112701542 @default.
- W4294636662 cites W3137474587 @default.
- W4294636662 cites W3139826151 @default.
- W4294636662 cites W3158095128 @default.
- W4294636662 cites W3158824596 @default.
- W4294636662 cites W3174477813 @default.
- W4294636662 cites W3194639102 @default.
- W4294636662 cites W3217557310 @default.
- W4294636662 cites W4376848630 @default.
- W4294636662 doi "https://doi.org/10.1186/s13014-022-02121-3" @default.
- W4294636662 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36064571" @default.
- W4294636662 hasPublicationYear "2022" @default.
- W4294636662 type Work @default.
- W4294636662 citedByCount "2" @default.
- W4294636662 countsByYear W42946366622023 @default.
- W4294636662 crossrefType "journal-article" @default.
- W4294636662 hasAuthorship W4294636662A5003515419 @default.
- W4294636662 hasAuthorship W4294636662A5006175077 @default.
- W4294636662 hasAuthorship W4294636662A5010444377 @default.
- W4294636662 hasAuthorship W4294636662A5030009997 @default.
- W4294636662 hasAuthorship W4294636662A5072964829 @default.
- W4294636662 hasAuthorship W4294636662A5077660882 @default.
- W4294636662 hasBestOaLocation W42946366621 @default.
- W4294636662 hasConcept C121684516 @default.
- W4294636662 hasConcept C126322002 @default.
- W4294636662 hasConcept C126838900 @default.
- W4294636662 hasConcept C141898687 @default.
- W4294636662 hasConcept C154945302 @default.
- W4294636662 hasConcept C201645570 @default.
- W4294636662 hasConcept C2777416452 @default.
- W4294636662 hasConcept C2779104521 @default.
- W4294636662 hasConcept C2781074409 @default.
- W4294636662 hasConcept C2989005 @default.
- W4294636662 hasConcept C41008148 @default.
- W4294636662 hasConcept C509974204 @default.
- W4294636662 hasConcept C71924100 @default.
- W4294636662 hasConcept C89600930 @default.
- W4294636662 hasConceptScore W4294636662C121684516 @default.
- W4294636662 hasConceptScore W4294636662C126322002 @default.
- W4294636662 hasConceptScore W4294636662C126838900 @default.
- W4294636662 hasConceptScore W4294636662C141898687 @default.
- W4294636662 hasConceptScore W4294636662C154945302 @default.
- W4294636662 hasConceptScore W4294636662C201645570 @default.
- W4294636662 hasConceptScore W4294636662C2777416452 @default.
- W4294636662 hasConceptScore W4294636662C2779104521 @default.
- W4294636662 hasConceptScore W4294636662C2781074409 @default.
- W4294636662 hasConceptScore W4294636662C2989005 @default.
- W4294636662 hasConceptScore W4294636662C41008148 @default.
- W4294636662 hasConceptScore W4294636662C509974204 @default.
- W4294636662 hasConceptScore W4294636662C71924100 @default.