Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294647002> ?p ?o ?g. }
- W4294647002 endingPage "107852" @default.
- W4294647002 startingPage "107852" @default.
- W4294647002 abstract "The vacuum plume, which can incur impingement forces, heat fluxes, and contaminations on the spacecraft, has been a vital issue in space missions such as lunar landings. The direct simulation Monte Carlo (DSMC) method is generally used to simulate the vacuum plume. However, DSMC is a particle simulation, and thus, it is very time-consuming, making it impossible to achieve real-time analysis during lunar landings. Motivated by this tricky issue, we explore the feasibility of deep learning to predict the vacuum plume using convolutional neural networks (CNN). In the study, a CNN-based DSMC method (CNN-DSMC) is proposed. The dataset is obtained by the DSMC simulation. The inputs of CNN-DSMC are the shape information and the boundary conditions, which are transformed into the signed distance function (SDF) and identifier matrix (IM), respectively. In particular, a shock-based partitioned method is developed to construct IM to suit the complex flow field with the shock wave. Finally, a vacuum plume velocity field is predicted using the proposed CNN-DSMC, and the prediction of CNN-DSMC is well consistent with DSMC results. Most importantly, compared with the traditional DSMC, the speedup of CNN-DSMC can be up to 4 orders of magnitude, suggesting that CNN-DSMC is a promising method for real-time analysis during lunar landings." @default.
- W4294647002 created "2022-09-05" @default.
- W4294647002 creator A5016139247 @default.
- W4294647002 creator A5018058618 @default.
- W4294647002 creator A5031605581 @default.
- W4294647002 creator A5072279396 @default.
- W4294647002 creator A5075193406 @default.
- W4294647002 creator A5090901608 @default.
- W4294647002 date "2022-10-01" @default.
- W4294647002 modified "2023-10-18" @default.
- W4294647002 title "Fast vacuum plume prediction using a convolutional neural networks-based direct simulation Monte Carlo method" @default.
- W4294647002 cites W1981363851 @default.
- W4294647002 cites W1986397482 @default.
- W4294647002 cites W1988783840 @default.
- W4294647002 cites W1999244633 @default.
- W4294647002 cites W2094556518 @default.
- W4294647002 cites W2563600282 @default.
- W4294647002 cites W2593990600 @default.
- W4294647002 cites W2790769665 @default.
- W4294647002 cites W2792653414 @default.
- W4294647002 cites W2794284562 @default.
- W4294647002 cites W2810772362 @default.
- W4294647002 cites W2884001105 @default.
- W4294647002 cites W2903558083 @default.
- W4294647002 cites W2906127156 @default.
- W4294647002 cites W2946771678 @default.
- W4294647002 cites W2955767732 @default.
- W4294647002 cites W2964624821 @default.
- W4294647002 cites W3026319636 @default.
- W4294647002 cites W3033486193 @default.
- W4294647002 cites W3038687103 @default.
- W4294647002 cites W3096725651 @default.
- W4294647002 cites W3098710637 @default.
- W4294647002 cites W3138546858 @default.
- W4294647002 cites W3144090498 @default.
- W4294647002 cites W3157328472 @default.
- W4294647002 cites W3169901851 @default.
- W4294647002 cites W3193308275 @default.
- W4294647002 cites W3198804470 @default.
- W4294647002 cites W3200905050 @default.
- W4294647002 cites W3216594169 @default.
- W4294647002 cites W3217565946 @default.
- W4294647002 cites W4205519721 @default.
- W4294647002 cites W4230684562 @default.
- W4294647002 doi "https://doi.org/10.1016/j.ast.2022.107852" @default.
- W4294647002 hasPublicationYear "2022" @default.
- W4294647002 type Work @default.
- W4294647002 citedByCount "1" @default.
- W4294647002 countsByYear W42946470022022 @default.
- W4294647002 crossrefType "journal-article" @default.
- W4294647002 hasAuthorship W4294647002A5016139247 @default.
- W4294647002 hasAuthorship W4294647002A5018058618 @default.
- W4294647002 hasAuthorship W4294647002A5031605581 @default.
- W4294647002 hasAuthorship W4294647002A5072279396 @default.
- W4294647002 hasAuthorship W4294647002A5075193406 @default.
- W4294647002 hasAuthorship W4294647002A5090901608 @default.
- W4294647002 hasConcept C105795698 @default.
- W4294647002 hasConcept C11413529 @default.
- W4294647002 hasConcept C121332964 @default.
- W4294647002 hasConcept C121864883 @default.
- W4294647002 hasConcept C122592724 @default.
- W4294647002 hasConcept C127413603 @default.
- W4294647002 hasConcept C146978453 @default.
- W4294647002 hasConcept C153294291 @default.
- W4294647002 hasConcept C154945302 @default.
- W4294647002 hasConcept C164916747 @default.
- W4294647002 hasConcept C19499675 @default.
- W4294647002 hasConcept C2775840915 @default.
- W4294647002 hasConcept C33923547 @default.
- W4294647002 hasConcept C41008148 @default.
- W4294647002 hasConcept C50644808 @default.
- W4294647002 hasConcept C81363708 @default.
- W4294647002 hasConceptScore W4294647002C105795698 @default.
- W4294647002 hasConceptScore W4294647002C11413529 @default.
- W4294647002 hasConceptScore W4294647002C121332964 @default.
- W4294647002 hasConceptScore W4294647002C121864883 @default.
- W4294647002 hasConceptScore W4294647002C122592724 @default.
- W4294647002 hasConceptScore W4294647002C127413603 @default.
- W4294647002 hasConceptScore W4294647002C146978453 @default.
- W4294647002 hasConceptScore W4294647002C153294291 @default.
- W4294647002 hasConceptScore W4294647002C154945302 @default.
- W4294647002 hasConceptScore W4294647002C164916747 @default.
- W4294647002 hasConceptScore W4294647002C19499675 @default.
- W4294647002 hasConceptScore W4294647002C2775840915 @default.
- W4294647002 hasConceptScore W4294647002C33923547 @default.
- W4294647002 hasConceptScore W4294647002C41008148 @default.
- W4294647002 hasConceptScore W4294647002C50644808 @default.
- W4294647002 hasConceptScore W4294647002C81363708 @default.
- W4294647002 hasLocation W42946470021 @default.
- W4294647002 hasOpenAccess W4294647002 @default.
- W4294647002 hasPrimaryLocation W42946470021 @default.
- W4294647002 hasRelatedWork W1590178174 @default.
- W4294647002 hasRelatedWork W1628921048 @default.
- W4294647002 hasRelatedWork W1643734128 @default.
- W4294647002 hasRelatedWork W1964499097 @default.
- W4294647002 hasRelatedWork W1995872228 @default.
- W4294647002 hasRelatedWork W1999343690 @default.
- W4294647002 hasRelatedWork W2029085345 @default.