Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294647531> ?p ?o ?g. }
- W4294647531 abstract "Nowadays, patients with chronic diseases such as diabetes and hypertension have reached alarming numbers worldwide. These diseases increase the risk of developing acute complications and involve a substantial economic burden and demand for health resources. The widespread adoption of Electronic Health Records (EHRs) is opening great opportunities for supporting decision-making. Nevertheless, data extracted from EHRs are complex (heterogeneous, high-dimensional and usually noisy), hampering the knowledge extraction with conventional approaches.We propose the use of the Denoising Autoencoder (DAE), a Machine Learning (ML) technique allowing to transform high-dimensional data into latent representations (LRs), thus addressing the main challenges with clinical data. We explore in this work how the combination of LRs with a visualization method can be used to map the patient data in a two-dimensional space, gaining knowledge about the distribution of patients with different chronic conditions. Furthermore, this representation can be also used to characterize the patient's health status evolution, which is of paramount importance in the clinical setting.To obtain clinical LRs, we considered real-world data extracted from EHRs linked to the University Hospital of Fuenlabrada in Spain. Experimental results showed the great potential of DAEs to identify patients with clinical patterns linked to hypertension, diabetes and multimorbidity. The procedure allowed us to find patients with the same main chronic disease but different clinical characteristics. Thus, we identified two kinds of diabetic patients with differences in their drug therapy (insulin and non-insulin dependant), and also a group of women affected by hypertension and gestational diabetes. We also present a proof of concept for mapping the health status evolution of synthetic patients when considering the most significant diagnoses and drugs associated with chronic patients.Our results highlighted the value of ML techniques to extract clinical knowledge, supporting the identification of patients with certain chronic conditions. Furthermore, the patient's health status progression on the two-dimensional space might be used as a tool for clinicians aiming to characterize health conditions and identify their more relevant clinical codes." @default.
- W4294647531 created "2022-09-05" @default.
- W4294647531 creator A5018305051 @default.
- W4294647531 creator A5084198564 @default.
- W4294647531 creator A5088291579 @default.
- W4294647531 creator A5091890497 @default.
- W4294647531 date "2022-09-05" @default.
- W4294647531 modified "2023-10-09" @default.
- W4294647531 title "Learning and visualizing chronic latent representations using electronic health records" @default.
- W4294647531 cites W1808652302 @default.
- W4294647531 cites W1842840699 @default.
- W4294647531 cites W1922474554 @default.
- W4294647531 cites W1956239603 @default.
- W4294647531 cites W1967017916 @default.
- W4294647531 cites W1973825638 @default.
- W4294647531 cites W1978804804 @default.
- W4294647531 cites W1985059878 @default.
- W4294647531 cites W1988918323 @default.
- W4294647531 cites W2004203864 @default.
- W4294647531 cites W2011430131 @default.
- W4294647531 cites W2017978677 @default.
- W4294647531 cites W2020473483 @default.
- W4294647531 cites W2025768430 @default.
- W4294647531 cites W2033250946 @default.
- W4294647531 cites W2033454243 @default.
- W4294647531 cites W2042954874 @default.
- W4294647531 cites W2062573090 @default.
- W4294647531 cites W2062686485 @default.
- W4294647531 cites W2074226299 @default.
- W4294647531 cites W2074307717 @default.
- W4294647531 cites W2097368998 @default.
- W4294647531 cites W2100495367 @default.
- W4294647531 cites W2104374197 @default.
- W4294647531 cites W2118978333 @default.
- W4294647531 cites W2120435692 @default.
- W4294647531 cites W2121382432 @default.
- W4294647531 cites W2135781475 @default.
- W4294647531 cites W2137686028 @default.
- W4294647531 cites W2143413851 @default.
- W4294647531 cites W2147663252 @default.
- W4294647531 cites W2158703410 @default.
- W4294647531 cites W2160805609 @default.
- W4294647531 cites W2254039850 @default.
- W4294647531 cites W2289846183 @default.
- W4294647531 cites W2404901863 @default.
- W4294647531 cites W2480651174 @default.
- W4294647531 cites W2524000875 @default.
- W4294647531 cites W2557301950 @default.
- W4294647531 cites W2591832038 @default.
- W4294647531 cites W2752973482 @default.
- W4294647531 cites W2760217853 @default.
- W4294647531 cites W2790350670 @default.
- W4294647531 cites W2796511697 @default.
- W4294647531 cites W2808897169 @default.
- W4294647531 cites W2857237370 @default.
- W4294647531 cites W2883924858 @default.
- W4294647531 cites W2887036440 @default.
- W4294647531 cites W2950562763 @default.
- W4294647531 cites W2951915646 @default.
- W4294647531 cites W2963174546 @default.
- W4294647531 cites W2975605169 @default.
- W4294647531 cites W3004465995 @default.
- W4294647531 cites W3008420520 @default.
- W4294647531 cites W3010692414 @default.
- W4294647531 cites W3011193648 @default.
- W4294647531 cites W3045495939 @default.
- W4294647531 cites W3111073730 @default.
- W4294647531 cites W3141188857 @default.
- W4294647531 cites W3146143520 @default.
- W4294647531 cites W3187897714 @default.
- W4294647531 cites W3193534298 @default.
- W4294647531 cites W3213375231 @default.
- W4294647531 cites W3213952842 @default.
- W4294647531 cites W4249344264 @default.
- W4294647531 doi "https://doi.org/10.1186/s13040-022-00303-z" @default.
- W4294647531 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36064616" @default.
- W4294647531 hasPublicationYear "2022" @default.
- W4294647531 type Work @default.
- W4294647531 citedByCount "1" @default.
- W4294647531 countsByYear W42946475312022 @default.
- W4294647531 crossrefType "journal-article" @default.
- W4294647531 hasAuthorship W4294647531A5018305051 @default.
- W4294647531 hasAuthorship W4294647531A5084198564 @default.
- W4294647531 hasAuthorship W4294647531A5088291579 @default.
- W4294647531 hasAuthorship W4294647531A5091890497 @default.
- W4294647531 hasBestOaLocation W42946475311 @default.
- W4294647531 hasConcept C101738243 @default.
- W4294647531 hasConcept C108583219 @default.
- W4294647531 hasConcept C119857082 @default.
- W4294647531 hasConcept C134018914 @default.
- W4294647531 hasConcept C142724271 @default.
- W4294647531 hasConcept C154945302 @default.
- W4294647531 hasConcept C160735492 @default.
- W4294647531 hasConcept C162324750 @default.
- W4294647531 hasConcept C17744445 @default.
- W4294647531 hasConcept C177713679 @default.
- W4294647531 hasConcept C199539241 @default.
- W4294647531 hasConcept C2522767166 @default.
- W4294647531 hasConcept C2776359362 @default.
- W4294647531 hasConcept C2779134260 @default.