Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294653721> ?p ?o ?g. }
- W4294653721 endingPage "111872" @default.
- W4294653721 startingPage "111872" @default.
- W4294653721 abstract "The main trend in the classification of defects in semiconductor wafers from scanning electron microscopy images is the use of convolutional neural networks. These methods allow automatic feature extraction and supply high accuracy. However, they have limitations since they need a large number of samples in the training phase and are computationally expensive in general. Methods based on visual vocabularies are an efficient alternative to this type of networks that can be implemented with a reduced number of training samples. Although visual vocabularies have been successfully used in different image classification problems, to our knowledge they have never been tested in the classification of defects in semiconductor material wafers from scanning electron microscopy images. On the rectangular region holding the defect, the scale-invariant feature transform algorithm is applied to determine the points of interest and to calculate the descriptors of the patches containing these points. By training a clustering algorithm with these features, a visual vocabulary is created to describe each image as a bag of visual words. Two approaches for coding the descriptors are studied: (i) The more traditional one performs a count of the occurrence of each visual word, and (ii) a modern approach known as Fisher vector which measures the deviation between each descriptor and the generative Gaussian mixture model. Comparing both variants using support vector machines it is seen that Fisher vector coding is computationally more efficient and reports better classification results. The usefulness of visual vocabularies for defect classification on semiconductor wafers is showed by the 91.89% and 93.13% accuracy obtained for bag of visual words and Fisher vector coding, respectively. The training and testing times are lower than 5 min for both approaches." @default.
- W4294653721 created "2022-09-05" @default.
- W4294653721 creator A5004014795 @default.
- W4294653721 creator A5050805384 @default.
- W4294653721 creator A5062083281 @default.
- W4294653721 creator A5064941657 @default.
- W4294653721 creator A5088973319 @default.
- W4294653721 date "2022-10-01" @default.
- W4294653721 modified "2023-10-11" @default.
- W4294653721 title "Defect classification on semiconductor wafers using Fisher vector and visual vocabularies coding" @default.
- W4294653721 cites W1964243794 @default.
- W4294653721 cites W1966385142 @default.
- W4294653721 cites W1989432876 @default.
- W4294653721 cites W2003352944 @default.
- W4294653721 cites W2065184261 @default.
- W4294653721 cites W2077450827 @default.
- W4294653721 cites W2295124130 @default.
- W4294653721 cites W2588896082 @default.
- W4294653721 cites W2739489726 @default.
- W4294653721 cites W2920311927 @default.
- W4294653721 cites W2946762985 @default.
- W4294653721 cites W2997583607 @default.
- W4294653721 cites W3046220160 @default.
- W4294653721 cites W3046371026 @default.
- W4294653721 cites W3146188393 @default.
- W4294653721 cites W3159414086 @default.
- W4294653721 cites W3168157593 @default.
- W4294653721 cites W3202169414 @default.
- W4294653721 cites W3207703347 @default.
- W4294653721 cites W4200288655 @default.
- W4294653721 cites W4210430458 @default.
- W4294653721 cites W4281633291 @default.
- W4294653721 doi "https://doi.org/10.1016/j.measurement.2022.111872" @default.
- W4294653721 hasPublicationYear "2022" @default.
- W4294653721 type Work @default.
- W4294653721 citedByCount "5" @default.
- W4294653721 countsByYear W42946537212022 @default.
- W4294653721 countsByYear W42946537212023 @default.
- W4294653721 crossrefType "journal-article" @default.
- W4294653721 hasAuthorship W4294653721A5004014795 @default.
- W4294653721 hasAuthorship W4294653721A5050805384 @default.
- W4294653721 hasAuthorship W4294653721A5062083281 @default.
- W4294653721 hasAuthorship W4294653721A5064941657 @default.
- W4294653721 hasAuthorship W4294653721A5088973319 @default.
- W4294653721 hasConcept C105795698 @default.
- W4294653721 hasConcept C115961682 @default.
- W4294653721 hasConcept C12267149 @default.
- W4294653721 hasConcept C138885662 @default.
- W4294653721 hasConcept C153180895 @default.
- W4294653721 hasConcept C154945302 @default.
- W4294653721 hasConcept C1667742 @default.
- W4294653721 hasConcept C167611913 @default.
- W4294653721 hasConcept C179518139 @default.
- W4294653721 hasConcept C189391414 @default.
- W4294653721 hasConcept C2777601683 @default.
- W4294653721 hasConcept C31972630 @default.
- W4294653721 hasConcept C33923547 @default.
- W4294653721 hasConcept C41008148 @default.
- W4294653721 hasConcept C41895202 @default.
- W4294653721 hasConcept C52622490 @default.
- W4294653721 hasConcept C61224824 @default.
- W4294653721 hasConcept C73555534 @default.
- W4294653721 hasConcept C75294576 @default.
- W4294653721 hasConcept C81363708 @default.
- W4294653721 hasConcept C83665646 @default.
- W4294653721 hasConceptScore W4294653721C105795698 @default.
- W4294653721 hasConceptScore W4294653721C115961682 @default.
- W4294653721 hasConceptScore W4294653721C12267149 @default.
- W4294653721 hasConceptScore W4294653721C138885662 @default.
- W4294653721 hasConceptScore W4294653721C153180895 @default.
- W4294653721 hasConceptScore W4294653721C154945302 @default.
- W4294653721 hasConceptScore W4294653721C1667742 @default.
- W4294653721 hasConceptScore W4294653721C167611913 @default.
- W4294653721 hasConceptScore W4294653721C179518139 @default.
- W4294653721 hasConceptScore W4294653721C189391414 @default.
- W4294653721 hasConceptScore W4294653721C2777601683 @default.
- W4294653721 hasConceptScore W4294653721C31972630 @default.
- W4294653721 hasConceptScore W4294653721C33923547 @default.
- W4294653721 hasConceptScore W4294653721C41008148 @default.
- W4294653721 hasConceptScore W4294653721C41895202 @default.
- W4294653721 hasConceptScore W4294653721C52622490 @default.
- W4294653721 hasConceptScore W4294653721C61224824 @default.
- W4294653721 hasConceptScore W4294653721C73555534 @default.
- W4294653721 hasConceptScore W4294653721C75294576 @default.
- W4294653721 hasConceptScore W4294653721C81363708 @default.
- W4294653721 hasConceptScore W4294653721C83665646 @default.
- W4294653721 hasFunder F4320315062 @default.
- W4294653721 hasFunder F4320319005 @default.
- W4294653721 hasFunder F4320327207 @default.
- W4294653721 hasLocation W42946537211 @default.
- W4294653721 hasOpenAccess W4294653721 @default.
- W4294653721 hasPrimaryLocation W42946537211 @default.
- W4294653721 hasRelatedWork W1995462736 @default.
- W4294653721 hasRelatedWork W2009049007 @default.
- W4294653721 hasRelatedWork W2028757524 @default.
- W4294653721 hasRelatedWork W2075383893 @default.
- W4294653721 hasRelatedWork W2158102958 @default.
- W4294653721 hasRelatedWork W2311865135 @default.