Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294662010> ?p ?o ?g. }
- W4294662010 endingPage "111875" @default.
- W4294662010 startingPage "111875" @default.
- W4294662010 abstract "Gas path fault diagnosis plays a critical role in the security guarantee and maintenance of aero-engines. In this paper, an approach based on a fusion neural network under multiple-model architecture for gas path fault detection and isolation is proposed. We develop a multi-channel long short-term memory network based on a sliding window to explore temporal and spatial relationships of data and capture the residuals of sensor measurements between predicted and observed values. Additionally, denoising autoencoders under a multiple-model architecture are introduced so as to perform fault detection and isolation based on the comparison of reconstructed prediction errors and isolation thresholds. Several simulation results verify that the diagnostic model has excellent robustness and diagnostic ability. The proposed method is compared with other common methods, and the advantages and functions of this method are presented." @default.
- W4294662010 created "2022-09-06" @default.
- W4294662010 creator A5004035609 @default.
- W4294662010 creator A5006943333 @default.
- W4294662010 creator A5017800998 @default.
- W4294662010 creator A5030691366 @default.
- W4294662010 creator A5058782332 @default.
- W4294662010 date "2022-10-01" @default.
- W4294662010 modified "2023-09-27" @default.
- W4294662010 title "Gas path fault detection and isolation for aero-engine based on LSTM-DAE approach under multiple-model architecture" @default.
- W4294662010 cites W1971251909 @default.
- W4294662010 cites W1991269832 @default.
- W4294662010 cites W2008330154 @default.
- W4294662010 cites W2025768430 @default.
- W4294662010 cites W2043039095 @default.
- W4294662010 cites W2052980801 @default.
- W4294662010 cites W2054864534 @default.
- W4294662010 cites W2072572638 @default.
- W4294662010 cites W2085814343 @default.
- W4294662010 cites W2089491986 @default.
- W4294662010 cites W2102883295 @default.
- W4294662010 cites W2116349459 @default.
- W4294662010 cites W2263289545 @default.
- W4294662010 cites W2561921147 @default.
- W4294662010 cites W2783323081 @default.
- W4294662010 cites W2789875227 @default.
- W4294662010 cites W2794081072 @default.
- W4294662010 cites W2799581077 @default.
- W4294662010 cites W2801712269 @default.
- W4294662010 cites W2808162871 @default.
- W4294662010 cites W2895910969 @default.
- W4294662010 cites W2908875359 @default.
- W4294662010 cites W2912327636 @default.
- W4294662010 cites W2943255233 @default.
- W4294662010 cites W2950150695 @default.
- W4294662010 cites W2969120995 @default.
- W4294662010 cites W2972805777 @default.
- W4294662010 cites W2973203544 @default.
- W4294662010 cites W2979232848 @default.
- W4294662010 cites W2990632441 @default.
- W4294662010 cites W2994863453 @default.
- W4294662010 cites W2997208567 @default.
- W4294662010 cites W3016088311 @default.
- W4294662010 cites W3022525995 @default.
- W4294662010 cites W3025806395 @default.
- W4294662010 cites W3041091733 @default.
- W4294662010 cites W3089419019 @default.
- W4294662010 cites W3122124041 @default.
- W4294662010 cites W3142292878 @default.
- W4294662010 cites W3157094069 @default.
- W4294662010 cites W3197970745 @default.
- W4294662010 cites W3200063094 @default.
- W4294662010 cites W4200069638 @default.
- W4294662010 cites W4205816981 @default.
- W4294662010 doi "https://doi.org/10.1016/j.measurement.2022.111875" @default.
- W4294662010 hasPublicationYear "2022" @default.
- W4294662010 type Work @default.
- W4294662010 citedByCount "3" @default.
- W4294662010 countsByYear W42946620102022 @default.
- W4294662010 countsByYear W42946620102023 @default.
- W4294662010 crossrefType "journal-article" @default.
- W4294662010 hasAuthorship W4294662010A5004035609 @default.
- W4294662010 hasAuthorship W4294662010A5006943333 @default.
- W4294662010 hasAuthorship W4294662010A5017800998 @default.
- W4294662010 hasAuthorship W4294662010A5030691366 @default.
- W4294662010 hasAuthorship W4294662010A5058782332 @default.
- W4294662010 hasConcept C102392041 @default.
- W4294662010 hasConcept C104317684 @default.
- W4294662010 hasConcept C111919701 @default.
- W4294662010 hasConcept C124101348 @default.
- W4294662010 hasConcept C127413603 @default.
- W4294662010 hasConcept C152745839 @default.
- W4294662010 hasConcept C153180895 @default.
- W4294662010 hasConcept C154945302 @default.
- W4294662010 hasConcept C172707124 @default.
- W4294662010 hasConcept C185592680 @default.
- W4294662010 hasConcept C199360897 @default.
- W4294662010 hasConcept C2775941552 @default.
- W4294662010 hasConcept C2777735758 @default.
- W4294662010 hasConcept C2778751112 @default.
- W4294662010 hasConcept C2985438705 @default.
- W4294662010 hasConcept C41008148 @default.
- W4294662010 hasConcept C50644808 @default.
- W4294662010 hasConcept C55493867 @default.
- W4294662010 hasConcept C63479239 @default.
- W4294662010 hasConcept C78519656 @default.
- W4294662010 hasConcept C79403827 @default.
- W4294662010 hasConcept C86803240 @default.
- W4294662010 hasConcept C89423630 @default.
- W4294662010 hasConceptScore W4294662010C102392041 @default.
- W4294662010 hasConceptScore W4294662010C104317684 @default.
- W4294662010 hasConceptScore W4294662010C111919701 @default.
- W4294662010 hasConceptScore W4294662010C124101348 @default.
- W4294662010 hasConceptScore W4294662010C127413603 @default.
- W4294662010 hasConceptScore W4294662010C152745839 @default.
- W4294662010 hasConceptScore W4294662010C153180895 @default.
- W4294662010 hasConceptScore W4294662010C154945302 @default.
- W4294662010 hasConceptScore W4294662010C172707124 @default.