Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294675644> ?p ?o ?g. }
- W4294675644 endingPage "100245" @default.
- W4294675644 startingPage "100245" @default.
- W4294675644 abstract "Motorcyclists’ at-fault status is an important factor influencing crash injury severity in that intrinsically unsafe riders tend to be at fault and are the ones likely to be involved in severe crashes. However, this endogeneity issue and its influence on model estimations have seldom been investigated with regard to motorcyclist crash severity analysis. This study proposes a simultaneous model system to account for the endogenous effects of at-fault status in the motorcyclists’ injury severity analysis. Four Bayesian simultaneous models were developed using motorcyclist crash injury data from Queensland, Australia, from the year 2017 through 2018, including an independent binary and independent ordered Probit model, a simultaneous binary-ordered Probit model without recursive structure, a simultaneous binary-ordered Probit model with a recursive structure, and a simultaneous random-parameters binary-ordered Probit model with a recursive structure. The results of all simultaneous models indicate the existence of endogeneity associated with at-fault status in the injury outcome analysis. In particular, the endogenous relationship is detected by the significant cross-equation correlations in the simultaneous models. The model comparison by Deviance Information Criteria highlights the superiority of the simultaneous random-parameters model with a recursive structure. It was found that exogenous variables such as traffic sign-controlled measures, posted speed limits of 100–110 km/h, the presence of vertical grades, rider age 16–24 years, and unlicensed influenced injury severity indirectly through at-fault status, and ignoring these indirect influences could result in biased estimates. The presence of random parameters, such as collisions with heavy vehicles and riders over 59 years, highlights the importance of considering heterogeneity. The simultaneous random-parameters model with a recursive structure model revealed that the critical factors contributing to riders’ at-fault status included unlicensed riders and posted speed limits of 100–110 km/h, and the crucial factors influencing riders’ injury levels included head-on crashes, collisions with heavy vehicles, darkness-unlighted, and riders over 59 years old. The proposed model system demonstrates the importance of considering both endogeneity and heterogeneity for modeling the injury severity of motorcyclists." @default.
- W4294675644 created "2022-09-06" @default.
- W4294675644 creator A5010420853 @default.
- W4294675644 creator A5016357519 @default.
- W4294675644 creator A5056772102 @default.
- W4294675644 creator A5058159907 @default.
- W4294675644 creator A5089192072 @default.
- W4294675644 date "2022-12-01" @default.
- W4294675644 modified "2023-09-28" @default.
- W4294675644 title "Modeling endogeneity between motorcyclist injury severity and at-fault status by applying a Bayesian simultaneous random-parameters model with a recursive structure" @default.
- W4294675644 cites W1969320611 @default.
- W4294675644 cites W1980399291 @default.
- W4294675644 cites W1980410757 @default.
- W4294675644 cites W1987186312 @default.
- W4294675644 cites W1991250398 @default.
- W4294675644 cites W1994930583 @default.
- W4294675644 cites W1999616870 @default.
- W4294675644 cites W2009377713 @default.
- W4294675644 cites W2017551017 @default.
- W4294675644 cites W2034306099 @default.
- W4294675644 cites W2037766829 @default.
- W4294675644 cites W2039456928 @default.
- W4294675644 cites W2040418644 @default.
- W4294675644 cites W2044221754 @default.
- W4294675644 cites W2046231891 @default.
- W4294675644 cites W2053858124 @default.
- W4294675644 cites W2054466380 @default.
- W4294675644 cites W2055331638 @default.
- W4294675644 cites W2057765075 @default.
- W4294675644 cites W2065446896 @default.
- W4294675644 cites W2072813369 @default.
- W4294675644 cites W2075311013 @default.
- W4294675644 cites W2113168655 @default.
- W4294675644 cites W2126859005 @default.
- W4294675644 cites W2129708703 @default.
- W4294675644 cites W2136625176 @default.
- W4294675644 cites W2137731259 @default.
- W4294675644 cites W2145751202 @default.
- W4294675644 cites W2146623098 @default.
- W4294675644 cites W2148534890 @default.
- W4294675644 cites W2326119565 @default.
- W4294675644 cites W2464901545 @default.
- W4294675644 cites W2605021096 @default.
- W4294675644 cites W2767752289 @default.
- W4294675644 cites W2768074414 @default.
- W4294675644 cites W2769060077 @default.
- W4294675644 cites W2887792285 @default.
- W4294675644 cites W2893267712 @default.
- W4294675644 cites W2901672822 @default.
- W4294675644 cites W2913954194 @default.
- W4294675644 cites W2929012434 @default.
- W4294675644 cites W2932518173 @default.
- W4294675644 cites W2963830620 @default.
- W4294675644 cites W3004423606 @default.
- W4294675644 cites W3008879069 @default.
- W4294675644 cites W3013324596 @default.
- W4294675644 cites W3121181276 @default.
- W4294675644 cites W3200954796 @default.
- W4294675644 cites W4220927793 @default.
- W4294675644 doi "https://doi.org/10.1016/j.amar.2022.100245" @default.
- W4294675644 hasPublicationYear "2022" @default.
- W4294675644 type Work @default.
- W4294675644 citedByCount "2" @default.
- W4294675644 countsByYear W42946756442023 @default.
- W4294675644 crossrefType "journal-article" @default.
- W4294675644 hasAuthorship W4294675644A5010420853 @default.
- W4294675644 hasAuthorship W4294675644A5016357519 @default.
- W4294675644 hasAuthorship W4294675644A5056772102 @default.
- W4294675644 hasAuthorship W4294675644A5058159907 @default.
- W4294675644 hasAuthorship W4294675644A5089192072 @default.
- W4294675644 hasConcept C105795698 @default.
- W4294675644 hasConcept C107673813 @default.
- W4294675644 hasConcept C126322002 @default.
- W4294675644 hasConcept C149782125 @default.
- W4294675644 hasConcept C168743327 @default.
- W4294675644 hasConcept C183469790 @default.
- W4294675644 hasConcept C184314375 @default.
- W4294675644 hasConcept C199360897 @default.
- W4294675644 hasConcept C3017944768 @default.
- W4294675644 hasConcept C33923547 @default.
- W4294675644 hasConcept C41008148 @default.
- W4294675644 hasConcept C610760 @default.
- W4294675644 hasConcept C67257552 @default.
- W4294675644 hasConcept C70339092 @default.
- W4294675644 hasConcept C71924100 @default.
- W4294675644 hasConcept C95190672 @default.
- W4294675644 hasConcept C99454951 @default.
- W4294675644 hasConceptScore W4294675644C105795698 @default.
- W4294675644 hasConceptScore W4294675644C107673813 @default.
- W4294675644 hasConceptScore W4294675644C126322002 @default.
- W4294675644 hasConceptScore W4294675644C149782125 @default.
- W4294675644 hasConceptScore W4294675644C168743327 @default.
- W4294675644 hasConceptScore W4294675644C183469790 @default.
- W4294675644 hasConceptScore W4294675644C184314375 @default.
- W4294675644 hasConceptScore W4294675644C199360897 @default.
- W4294675644 hasConceptScore W4294675644C3017944768 @default.
- W4294675644 hasConceptScore W4294675644C33923547 @default.
- W4294675644 hasConceptScore W4294675644C41008148 @default.