Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294691306> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4294691306 abstract "Convolutional Neural Networks (CNN) have been widely used in artificial intelligence applications. A typical CNN contains both convolution and pooling layer, in which the convolution is to detect local conjunctions of features and the pooling is to merge similar patterns into one. It is necessary to make pooling operation, which plays a great role in CNN. Up to now, there have been numerous researches on CNN accelerators, however, most of the previous works are only focused on the acceleration of convolution layers, and the specific studies on pooling units are still lacking. Besides, the existing pooling designs are usually constrained by either the poor flexibility or the low energy/area efficiency. In this work, we propose a general purpose and energy-efficient planar data processor to support the pooling operation from different CNN structure. By using the configurable data path control method, the processor is able to support universal pooling operation with arbitrary input feature shape and arbitrary pooling kernel/stride/padding size. Besides, the processor exhibits high efficiency with hardware utilization ratio near 100% during operation, indicating good performance of the design. Most importantly, it is energy-efficient that exhibits 86%-off on power consumption and 62%-off on area utilization when compared with the separate pooling module of NVDLA (NVIDIA Deep Learning Accelerator), thus is particularly suitable for the resource-limited edge intelligent devices." @default.
- W4294691306 created "2022-09-06" @default.
- W4294691306 creator A5009847938 @default.
- W4294691306 creator A5021169746 @default.
- W4294691306 creator A5034580482 @default.
- W4294691306 creator A5038495391 @default.
- W4294691306 creator A5087505067 @default.
- W4294691306 date "2022-06-13" @default.
- W4294691306 modified "2023-10-18" @default.
- W4294691306 title "A General-Purpose and Configurable Planar Data Processor for Energy-Efficient Pooling Computation" @default.
- W4294691306 cites W2097453879 @default.
- W4294691306 cites W2397723600 @default.
- W4294691306 cites W2606722458 @default.
- W4294691306 cites W2936278485 @default.
- W4294691306 cites W2945146780 @default.
- W4294691306 cites W4253012315 @default.
- W4294691306 doi "https://doi.org/10.1109/aicas54282.2022.9869992" @default.
- W4294691306 hasPublicationYear "2022" @default.
- W4294691306 type Work @default.
- W4294691306 citedByCount "1" @default.
- W4294691306 countsByYear W42946913062023 @default.
- W4294691306 crossrefType "proceedings-article" @default.
- W4294691306 hasAuthorship W4294691306A5009847938 @default.
- W4294691306 hasAuthorship W4294691306A5021169746 @default.
- W4294691306 hasAuthorship W4294691306A5034580482 @default.
- W4294691306 hasAuthorship W4294691306A5038495391 @default.
- W4294691306 hasAuthorship W4294691306A5087505067 @default.
- W4294691306 hasConcept C113775141 @default.
- W4294691306 hasConcept C11413529 @default.
- W4294691306 hasConcept C114614502 @default.
- W4294691306 hasConcept C118524514 @default.
- W4294691306 hasConcept C119599485 @default.
- W4294691306 hasConcept C127413603 @default.
- W4294691306 hasConcept C154945302 @default.
- W4294691306 hasConcept C173608175 @default.
- W4294691306 hasConcept C18903297 @default.
- W4294691306 hasConcept C2742236 @default.
- W4294691306 hasConcept C2780165032 @default.
- W4294691306 hasConcept C33923547 @default.
- W4294691306 hasConcept C41008148 @default.
- W4294691306 hasConcept C45374587 @default.
- W4294691306 hasConcept C70437156 @default.
- W4294691306 hasConcept C74193536 @default.
- W4294691306 hasConcept C81363708 @default.
- W4294691306 hasConcept C86803240 @default.
- W4294691306 hasConcept C9390403 @default.
- W4294691306 hasConceptScore W4294691306C113775141 @default.
- W4294691306 hasConceptScore W4294691306C11413529 @default.
- W4294691306 hasConceptScore W4294691306C114614502 @default.
- W4294691306 hasConceptScore W4294691306C118524514 @default.
- W4294691306 hasConceptScore W4294691306C119599485 @default.
- W4294691306 hasConceptScore W4294691306C127413603 @default.
- W4294691306 hasConceptScore W4294691306C154945302 @default.
- W4294691306 hasConceptScore W4294691306C173608175 @default.
- W4294691306 hasConceptScore W4294691306C18903297 @default.
- W4294691306 hasConceptScore W4294691306C2742236 @default.
- W4294691306 hasConceptScore W4294691306C2780165032 @default.
- W4294691306 hasConceptScore W4294691306C33923547 @default.
- W4294691306 hasConceptScore W4294691306C41008148 @default.
- W4294691306 hasConceptScore W4294691306C45374587 @default.
- W4294691306 hasConceptScore W4294691306C70437156 @default.
- W4294691306 hasConceptScore W4294691306C74193536 @default.
- W4294691306 hasConceptScore W4294691306C81363708 @default.
- W4294691306 hasConceptScore W4294691306C86803240 @default.
- W4294691306 hasConceptScore W4294691306C9390403 @default.
- W4294691306 hasLocation W42946913061 @default.
- W4294691306 hasOpenAccess W4294691306 @default.
- W4294691306 hasPrimaryLocation W42946913061 @default.
- W4294691306 hasRelatedWork W2424871898 @default.
- W4294691306 hasRelatedWork W2517027266 @default.
- W4294691306 hasRelatedWork W2788663687 @default.
- W4294691306 hasRelatedWork W2792080776 @default.
- W4294691306 hasRelatedWork W2796942851 @default.
- W4294691306 hasRelatedWork W2891552639 @default.
- W4294691306 hasRelatedWork W3004532561 @default.
- W4294691306 hasRelatedWork W3207507293 @default.
- W4294691306 hasRelatedWork W4225850200 @default.
- W4294691306 hasRelatedWork W4255361632 @default.
- W4294691306 isParatext "false" @default.
- W4294691306 isRetracted "false" @default.
- W4294691306 workType "article" @default.