Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294723894> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4294723894 abstract "In digital soil mapping (DSM), a fundamental assumption is that the spatial variability of the target variable can be explained by the predictors or environmental covariates. Strategies to adequately sample the predictors have been well documented, with the conditioned Latin Hypercube Sampling (cHLS) algorithm receiving the most attention in the DSM community. Despite advances in sampling design, a critical gap remains in determining the number of samples required for a DSM project. We propose a simple workflow and function coded in R language, to determine the minimum sample size for the cLHS algorithm based on histograms of the predictor variables using the Freedman-Diaconis rule for determining optimal bin width. Data pre-processing was included to correct for multimodal and non-normally distributed data, since these can affect sample size determination from the histogram. Based on a user-selected confidence interval (CI) for the sample plan, the density of the histogram bins at the upper and lower bounds of the CI are used as a scaling factor to then determine minimum sample size. The technique is applied to a field-scale set of environmental covariates for a well sampled agricultural study site near Guelph, Ontario, Canada, and tested across a range of CIs. The results showed increasing minimum sample size with an increase in the CI selected. Minimum sample size increased from 44 to 83 samples when the CI increased from 50% to 95%, then increased exponentially to 194 samples for the 99% CI. The technique provided an estimate of minimum sample size that can then be used as an input to the cLHS algorithm." @default.
- W4294723894 created "2022-09-06" @default.
- W4294723894 creator A5020747807 @default.
- W4294723894 creator A5061554533 @default.
- W4294723894 creator A5075858129 @default.
- W4294723894 creator A5077536887 @default.
- W4294723894 creator A5078042069 @default.
- W4294723894 date "2022-09-01" @default.
- W4294723894 modified "2023-10-17" @default.
- W4294723894 title "Determining minimum sample size for the conditioned Latin hypercube sampling algorithm" @default.
- W4294723894 cites W1735309556 @default.
- W4294723894 cites W1981646498 @default.
- W4294723894 cites W1983513512 @default.
- W4294723894 cites W2023312901 @default.
- W4294723894 cites W2048092465 @default.
- W4294723894 cites W2054325787 @default.
- W4294723894 cites W2082137964 @default.
- W4294723894 cites W2114760186 @default.
- W4294723894 cites W2170801163 @default.
- W4294723894 cites W2424258070 @default.
- W4294723894 cites W2793752176 @default.
- W4294723894 cites W2916019257 @default.
- W4294723894 cites W2953159213 @default.
- W4294723894 cites W2996885413 @default.
- W4294723894 cites W4249517230 @default.
- W4294723894 doi "https://doi.org/10.1016/j.pedsph.2022.09.001" @default.
- W4294723894 hasPublicationYear "2022" @default.
- W4294723894 type Work @default.
- W4294723894 citedByCount "2" @default.
- W4294723894 countsByYear W42947238942023 @default.
- W4294723894 crossrefType "journal-article" @default.
- W4294723894 hasAuthorship W4294723894A5020747807 @default.
- W4294723894 hasAuthorship W4294723894A5061554533 @default.
- W4294723894 hasAuthorship W4294723894A5075858129 @default.
- W4294723894 hasAuthorship W4294723894A5077536887 @default.
- W4294723894 hasAuthorship W4294723894A5078042069 @default.
- W4294723894 hasConcept C105795698 @default.
- W4294723894 hasConcept C106131492 @default.
- W4294723894 hasConcept C11413529 @default.
- W4294723894 hasConcept C119043178 @default.
- W4294723894 hasConcept C129848803 @default.
- W4294723894 hasConcept C140779682 @default.
- W4294723894 hasConcept C185592680 @default.
- W4294723894 hasConcept C19499675 @default.
- W4294723894 hasConcept C198531522 @default.
- W4294723894 hasConcept C20820323 @default.
- W4294723894 hasConcept C31972630 @default.
- W4294723894 hasConcept C33923547 @default.
- W4294723894 hasConcept C41008148 @default.
- W4294723894 hasConcept C43617362 @default.
- W4294723894 hasConcept C44249647 @default.
- W4294723894 hasConceptScore W4294723894C105795698 @default.
- W4294723894 hasConceptScore W4294723894C106131492 @default.
- W4294723894 hasConceptScore W4294723894C11413529 @default.
- W4294723894 hasConceptScore W4294723894C119043178 @default.
- W4294723894 hasConceptScore W4294723894C129848803 @default.
- W4294723894 hasConceptScore W4294723894C140779682 @default.
- W4294723894 hasConceptScore W4294723894C185592680 @default.
- W4294723894 hasConceptScore W4294723894C19499675 @default.
- W4294723894 hasConceptScore W4294723894C198531522 @default.
- W4294723894 hasConceptScore W4294723894C20820323 @default.
- W4294723894 hasConceptScore W4294723894C31972630 @default.
- W4294723894 hasConceptScore W4294723894C33923547 @default.
- W4294723894 hasConceptScore W4294723894C41008148 @default.
- W4294723894 hasConceptScore W4294723894C43617362 @default.
- W4294723894 hasConceptScore W4294723894C44249647 @default.
- W4294723894 hasLocation W42947238941 @default.
- W4294723894 hasOpenAccess W4294723894 @default.
- W4294723894 hasPrimaryLocation W42947238941 @default.
- W4294723894 hasRelatedWork W2073194613 @default.
- W4294723894 hasRelatedWork W2111839789 @default.
- W4294723894 hasRelatedWork W2154735538 @default.
- W4294723894 hasRelatedWork W2218563287 @default.
- W4294723894 hasRelatedWork W2291164072 @default.
- W4294723894 hasRelatedWork W2364245233 @default.
- W4294723894 hasRelatedWork W2980066635 @default.
- W4294723894 hasRelatedWork W3188587804 @default.
- W4294723894 hasRelatedWork W38162065 @default.
- W4294723894 hasRelatedWork W3147453129 @default.
- W4294723894 isParatext "false" @default.
- W4294723894 isRetracted "false" @default.
- W4294723894 workType "article" @default.