Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294741480> ?p ?o ?g. }
- W4294741480 abstract "In recent years, the prevalence of type 2 diabetes mellitus (T2DM) has increased annually. The major complication of T2DM is cardiovascular disease (CVD). CVD is the main cause of death in T2DM patients, particularly those with comorbid acute coronary syndrome (ACS). Although risk prediction models using multivariate logistic regression are available to assess the probability of new-onset ACS development in T2DM patients, none have been established using machine learning (ML).Between January 2019 and January 2020, we enrolled 521 T2DM patients with new-onset ACS or no ACS from our institution's medical information recording system and divided them into a training dataset and a testing dataset. Seven ML algorithms were used to establish models to assess the probability of ACS coupled with 5-cross validation.We established a nomogram to assess the probability of newly diagnosed ACS in T2DM patients with an area under the curve (AUC) of 0.80 in the testing dataset and identified some key features: family history of CVD, history of smoking and drinking, aspartate aminotransferase level, age, neutrophil count, and Killip grade, which accelerated the development of ACS in patients with T2DM. The AUC values of the seven ML models were 0.70-0.96, and random forest model had the best performance (accuracy, 0.89; AUC, 0.96; recall, 0.83; precision, 0.91; F1 score, 0.87).ML algorithms, especially random forest model (AUC, 0.961), had higher performance than conventional logistic regression (AUC, 0.801) for assessing new-onset ACS probability in T2DM patients with excellent clinical and diagnostic value." @default.
- W4294741480 created "2022-09-06" @default.
- W4294741480 creator A5000755207 @default.
- W4294741480 creator A5001488944 @default.
- W4294741480 creator A5006983538 @default.
- W4294741480 creator A5019040533 @default.
- W4294741480 creator A5022411436 @default.
- W4294741480 creator A5029424597 @default.
- W4294741480 creator A5053134006 @default.
- W4294741480 creator A5065569866 @default.
- W4294741480 creator A5072294528 @default.
- W4294741480 date "2022-09-06" @default.
- W4294741480 modified "2023-09-27" @default.
- W4294741480 title "Machine learning algorithms identifying the risk of new-onset ACS in patients with type 2 diabetes mellitus: A retrospective cohort study" @default.
- W4294741480 cites W1973163442 @default.
- W4294741480 cites W2013458397 @default.
- W4294741480 cites W2017891096 @default.
- W4294741480 cites W2045030989 @default.
- W4294741480 cites W2092373725 @default.
- W4294741480 cites W2110424396 @default.
- W4294741480 cites W2147663252 @default.
- W4294741480 cites W2152341263 @default.
- W4294741480 cites W2170825597 @default.
- W4294741480 cites W2177870565 @default.
- W4294741480 cites W2279717914 @default.
- W4294741480 cites W2323525554 @default.
- W4294741480 cites W2330527682 @default.
- W4294741480 cites W2345410714 @default.
- W4294741480 cites W2345478245 @default.
- W4294741480 cites W2394513289 @default.
- W4294741480 cites W2402660168 @default.
- W4294741480 cites W2444268874 @default.
- W4294741480 cites W2555762683 @default.
- W4294741480 cites W2559304414 @default.
- W4294741480 cites W2614578122 @default.
- W4294741480 cites W2617605538 @default.
- W4294741480 cites W2743269518 @default.
- W4294741480 cites W2793289663 @default.
- W4294741480 cites W2806521060 @default.
- W4294741480 cites W2883022187 @default.
- W4294741480 cites W2952571707 @default.
- W4294741480 cites W2978368159 @default.
- W4294741480 cites W2981875186 @default.
- W4294741480 cites W2988960869 @default.
- W4294741480 cites W2998909968 @default.
- W4294741480 cites W3003465341 @default.
- W4294741480 cites W3003587825 @default.
- W4294741480 cites W3023997891 @default.
- W4294741480 cites W3025161810 @default.
- W4294741480 cites W3038230033 @default.
- W4294741480 cites W3040821360 @default.
- W4294741480 cites W3042077569 @default.
- W4294741480 cites W3042298725 @default.
- W4294741480 cites W3043386160 @default.
- W4294741480 cites W3048030988 @default.
- W4294741480 cites W3092284106 @default.
- W4294741480 cites W3093324510 @default.
- W4294741480 cites W3119464161 @default.
- W4294741480 cites W3122226502 @default.
- W4294741480 cites W3136430724 @default.
- W4294741480 cites W3164279337 @default.
- W4294741480 cites W3181127564 @default.
- W4294741480 cites W3181273965 @default.
- W4294741480 cites W4211082761 @default.
- W4294741480 doi "https://doi.org/10.3389/fpubh.2022.947204" @default.
- W4294741480 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36148336" @default.
- W4294741480 hasPublicationYear "2022" @default.
- W4294741480 type Work @default.
- W4294741480 citedByCount "0" @default.
- W4294741480 crossrefType "journal-article" @default.
- W4294741480 hasAuthorship W4294741480A5000755207 @default.
- W4294741480 hasAuthorship W4294741480A5001488944 @default.
- W4294741480 hasAuthorship W4294741480A5006983538 @default.
- W4294741480 hasAuthorship W4294741480A5019040533 @default.
- W4294741480 hasAuthorship W4294741480A5022411436 @default.
- W4294741480 hasAuthorship W4294741480A5029424597 @default.
- W4294741480 hasAuthorship W4294741480A5053134006 @default.
- W4294741480 hasAuthorship W4294741480A5065569866 @default.
- W4294741480 hasAuthorship W4294741480A5072294528 @default.
- W4294741480 hasBestOaLocation W42947414801 @default.
- W4294741480 hasConcept C11413529 @default.
- W4294741480 hasConcept C119857082 @default.
- W4294741480 hasConcept C126322002 @default.
- W4294741480 hasConcept C134018914 @default.
- W4294741480 hasConcept C151956035 @default.
- W4294741480 hasConcept C167135981 @default.
- W4294741480 hasConcept C169258074 @default.
- W4294741480 hasConcept C2777698277 @default.
- W4294741480 hasConcept C2910068830 @default.
- W4294741480 hasConcept C34626388 @default.
- W4294741480 hasConcept C41008148 @default.
- W4294741480 hasConcept C500558357 @default.
- W4294741480 hasConcept C555293320 @default.
- W4294741480 hasConcept C58471807 @default.
- W4294741480 hasConcept C71924100 @default.
- W4294741480 hasConcept C72563966 @default.
- W4294741480 hasConceptScore W4294741480C11413529 @default.
- W4294741480 hasConceptScore W4294741480C119857082 @default.
- W4294741480 hasConceptScore W4294741480C126322002 @default.
- W4294741480 hasConceptScore W4294741480C134018914 @default.