Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294754216> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4294754216 endingPage "171" @default.
- W4294754216 startingPage "170" @default.
- W4294754216 abstract "HomeRadiologyVol. 306, No. 1 PreviousNext Reviews and CommentaryEditorialArtificial Intelligence Outperforms Radiologists for Pancreatic Cancer Lymph Node Metastasis Prediction at CTLinda C. Chu , Elliot K. FishmanLinda C. Chu , Elliot K. FishmanAuthor AffiliationsFrom the Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Hal B168, 600 N Wolfe St, Baltimore, MD 21287.Address correspondence to L.C.C. (email: [email protected]).Linda C. Chu Elliot K. FishmanPublished Online:Sep 6 2022https://doi.org/10.1148/radiol.222012MoreSectionsFull textPDF ToolsImage ViewerAdd to favoritesCiteTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinked In References1. Grossberg AJ, Chu LC, Deig CR, et al. Multidisciplinary standards of care and recent progress in pancreatic ductal adenocarcinoma. CA Cancer J Clin 2020;70(5):375–403. Crossref, Medline, Google Scholar2. Groot VP, Rezaee N, Wu W, et al. Patterns, Timing, and Predictors of Recurrence Following Pancreatectomy for Pancreatic Ductal Adenocarcinoma. Ann Surg 2018;267(5):936–945. Crossref, Medline, Google Scholar3. Tseng DS, van Santvoort HC, Fegrachi S, et al. Diagnostic accuracy of CT in assessing extra-regional lymphadenopathy in pancreatic and peri-ampullary cancer: a systematic review and meta-analysis. Surg Oncol 2014;23(4):229–235. Crossref, Medline, Google Scholar4. Bian Y, Guo S, Jiang H, et al. Relationship Between Radiomics and Risk of Lymph Node Metastasis in Pancreatic Ductal Adenocarcinoma. Pancreas 2019;48(9):1195–1203. Crossref, Medline, Google Scholar5. Li K, Yao Q, Xiao J, et al. Contrast-enhanced CT radiomics for predicting lymph node metastasis in pancreatic ductal adenocarcinoma: a pilot study. Cancer Imaging 2020;20(1):12. Crossref, Medline, Google Scholar6. Shi L, Wang L, Wu C, Wei Y, Zhang Y, Chen J. Preoperative Prediction of Lymph Node Metastasis of Pancreatic Ductal Adenocarcinoma Based on a Radiomics Nomogram of Dual-Parametric MRI Imaging. Front Oncol 2022;12:927077. Crossref, Medline, Google Scholar7. Bian Y, Guo S, Jiang H, et al. Radiomics nomogram for the preoperative prediction of lymph node metastasis in pancreatic ductal adenocarcinoma. Cancer Imaging 2022;22(1):4. Crossref, Medline, Google Scholar8. Bian Y, Zheng Z, Fang X, et al. Artificial Intelligence to Predict Lymph Node Metastasis at CT in Pancreatic Ductal Adenocarcinoma. Radiology 2023;306(1):160–169. Abstract, Google Scholar9. Yao J, Cao K, Hou Y, et al. Deep Learning for Fully Automated Prediction of Overall Survival in Patients Undergoing Resection for Pancreatic Cancer: A Retrospective Multicenter Study. Ann Surg 2022.https://doi.org/10.1097/SLA.0000000000005465. Published online July 4, 2022. Crossref, Google Scholar10. Mukherjee S, Patra A, Khasawneh H, et al. Radiomics-Based Machine-Learning Models Can Detect Pancreatic Cancer on Prediagnostic CTs at a Substantial Lead Time Prior to Clinical Diagnosis. Gastroenterology 2022.https://doi.org/10.1053/j.gastro.2022.06.066. Published online July 1, 2022. Crossref, Google ScholarArticle HistoryReceived: Aug 9 2022Revision requested: Aug 15 2022Revision received: Aug 17 2022Accepted: Aug 19 2022Published online: Sept 06 2022Published in print: Jan 2023 FiguresReferencesRelatedDetailsAccompanying This ArticleArtificial Intelligence to Predict Lymph Node Metastasis at CT in Pancreatic Ductal AdenocarcinomaSep 6 2022RadiologyRecommended Articles Artificial Intelligence to Predict Lymph Node Metastasis at CT in Pancreatic Ductal AdenocarcinomaRadiology2022Volume: 306Issue: 1pp. 160-169Imaging-based Risk Scores for Treatment Selection in Early Pancreatic Cancer: A Step Forward for Tailored TreatmentRadiology2020Volume: 296Issue: 3pp. 552-553Percutaneous Irreversible Electroporation in Locally Advanced and Recurrent Pancreatic Cancer (PANFIRE-2): A Multicenter, Prospective, Single-Arm, Phase II StudyRadiology2019Volume: 294Issue: 1pp. 212-220Radiomics for CT Assessment of Vascular Contact in Pancreatic AdenocarcinomaRadiology2021Volume: 301Issue: 3pp. 623-624Preoperative CT Classification of the Resectability of Pancreatic Cancer: Interobserver AgreementRadiology2019Volume: 293Issue: 2pp. 343-349See More RSNA Education Exhibits Artificial Intelligence for Early Detection of Pancreatic Cancer: Preliminary Observations and ChallengesDigital Posters2019Pancreatic Cancer Imaging: A New Look at an Old ProblemDigital Posters2019A Multidisciplinary Approach for Program Development with Artificial Intelligence in Pancreatic Cancer: How We Fit InDigital Posters2019 RSNA Case Collection Krukenberg TumorsRSNA Case Collection2021Pancreatic lymphomaRSNA Case Collection2020Secondary Angiosarcoma of the BreastRSNA Case Collection2021 Vol. 306, No. 1 Metrics Altmetric Score PDF download" @default.
- W4294754216 created "2022-09-06" @default.
- W4294754216 creator A5043606838 @default.
- W4294754216 creator A5070486532 @default.
- W4294754216 date "2023-01-01" @default.
- W4294754216 modified "2023-09-28" @default.
- W4294754216 title "Artificial Intelligence Outperforms Radiologists for Pancreatic Cancer Lymph Node Metastasis Prediction at CT" @default.
- W4294754216 cites W1968326704 @default.
- W4294754216 cites W2601014096 @default.
- W4294754216 cites W2979358040 @default.
- W4294754216 cites W3008804813 @default.
- W4294754216 cites W3042568371 @default.
- W4294754216 cites W4205196780 @default.
- W4294754216 cites W4283780227 @default.
- W4294754216 cites W4283807077 @default.
- W4294754216 cites W4283825971 @default.
- W4294754216 cites W4294755849 @default.
- W4294754216 doi "https://doi.org/10.1148/radiol.222012" @default.
- W4294754216 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36066370" @default.
- W4294754216 hasPublicationYear "2023" @default.
- W4294754216 type Work @default.
- W4294754216 citedByCount "0" @default.
- W4294754216 crossrefType "journal-article" @default.
- W4294754216 hasAuthorship W4294754216A5043606838 @default.
- W4294754216 hasAuthorship W4294754216A5070486532 @default.
- W4294754216 hasConcept C121608353 @default.
- W4294754216 hasConcept C126322002 @default.
- W4294754216 hasConcept C143998085 @default.
- W4294754216 hasConcept C17744445 @default.
- W4294754216 hasConcept C199539241 @default.
- W4294754216 hasConcept C2779013556 @default.
- W4294754216 hasConcept C2779473830 @default.
- W4294754216 hasConcept C2780210213 @default.
- W4294754216 hasConcept C2780849966 @default.
- W4294754216 hasConcept C2781182431 @default.
- W4294754216 hasConcept C2992026798 @default.
- W4294754216 hasConcept C71924100 @default.
- W4294754216 hasConceptScore W4294754216C121608353 @default.
- W4294754216 hasConceptScore W4294754216C126322002 @default.
- W4294754216 hasConceptScore W4294754216C143998085 @default.
- W4294754216 hasConceptScore W4294754216C17744445 @default.
- W4294754216 hasConceptScore W4294754216C199539241 @default.
- W4294754216 hasConceptScore W4294754216C2779013556 @default.
- W4294754216 hasConceptScore W4294754216C2779473830 @default.
- W4294754216 hasConceptScore W4294754216C2780210213 @default.
- W4294754216 hasConceptScore W4294754216C2780849966 @default.
- W4294754216 hasConceptScore W4294754216C2781182431 @default.
- W4294754216 hasConceptScore W4294754216C2992026798 @default.
- W4294754216 hasConceptScore W4294754216C71924100 @default.
- W4294754216 hasIssue "1" @default.
- W4294754216 hasLocation W42947542161 @default.
- W4294754216 hasLocation W42947542162 @default.
- W4294754216 hasOpenAccess W4294754216 @default.
- W4294754216 hasPrimaryLocation W42947542161 @default.
- W4294754216 hasRelatedWork W1993147071 @default.
- W4294754216 hasRelatedWork W2084177191 @default.
- W4294754216 hasRelatedWork W2531714473 @default.
- W4294754216 hasRelatedWork W2586119928 @default.
- W4294754216 hasRelatedWork W2621209914 @default.
- W4294754216 hasRelatedWork W2902481227 @default.
- W4294754216 hasRelatedWork W2963199750 @default.
- W4294754216 hasRelatedWork W3104966608 @default.
- W4294754216 hasRelatedWork W3197068409 @default.
- W4294754216 hasRelatedWork W3217427758 @default.
- W4294754216 hasVolume "306" @default.
- W4294754216 isParatext "false" @default.
- W4294754216 isRetracted "false" @default.
- W4294754216 workType "article" @default.