Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294775907> ?p ?o ?g. }
- W4294775907 endingPage "1286" @default.
- W4294775907 startingPage "1273" @default.
- W4294775907 abstract "The infection caused by the SARS-CoV-2 (COVID-19) pandemic is a threat to human lives. An early and accurate diagnosis is necessary for treatment.The study presents an efficient classification methodology for precise identification of infection caused by COVID-19 using CT and X-ray images.The depthwise separable convolution-based model of MobileNet V2 was exploited for feature extraction. The features of infection were supplied to the SVM classifier for training which produced accurate classification results.The accuracies for CT and X-ray images are 99.42% and 98.54% respectively. The MCC score was used to avoid any mislead caused by accuracy and F1 score as it is more mathematically balanced metric. The MCC scores obtained for CT and X-ray were 0.9852 and 0.9657, respectively. The Youden's index showed a significant improvement of more than 2% for both imaging techniques.The proposed transfer learning-based approach obtained the best results for all evaluation metrics and produced reliable results for the accurate identification of COVID-19 symptoms. This study can help in reducing the time in diagnosis of the infection." @default.
- W4294775907 created "2022-09-06" @default.
- W4294775907 creator A5007043168 @default.
- W4294775907 creator A5009838892 @default.
- W4294775907 creator A5020820998 @default.
- W4294775907 creator A5027383822 @default.
- W4294775907 creator A5067213990 @default.
- W4294775907 date "2022-11-12" @default.
- W4294775907 modified "2023-10-02" @default.
- W4294775907 title "Detection of COVID-19 Infection in CT and X-ray images using transfer learning approach" @default.
- W4294775907 cites W1584308190 @default.
- W4294775907 cites W1995502098 @default.
- W4294775907 cites W2009637031 @default.
- W4294775907 cites W2062390613 @default.
- W4294775907 cites W2165698076 @default.
- W4294775907 cites W2618530766 @default.
- W4294775907 cites W2620760558 @default.
- W4294775907 cites W2885735575 @default.
- W4294775907 cites W2907688358 @default.
- W4294775907 cites W2979001271 @default.
- W4294775907 cites W2999309192 @default.
- W4294775907 cites W3005879071 @default.
- W4294775907 cites W3010313912 @default.
- W4294775907 cites W3011149445 @default.
- W4294775907 cites W3011414569 @default.
- W4294775907 cites W3016488464 @default.
- W4294775907 cites W3025953162 @default.
- W4294775907 cites W3034560014 @default.
- W4294775907 cites W3040660552 @default.
- W4294775907 cites W3085271422 @default.
- W4294775907 cites W3085784684 @default.
- W4294775907 cites W3086049619 @default.
- W4294775907 cites W3087128437 @default.
- W4294775907 cites W3098809754 @default.
- W4294775907 cites W3134700797 @default.
- W4294775907 cites W3134727298 @default.
- W4294775907 cites W3163860261 @default.
- W4294775907 cites W3169322724 @default.
- W4294775907 cites W3176584175 @default.
- W4294775907 cites W3190297862 @default.
- W4294775907 cites W3197072457 @default.
- W4294775907 cites W3201129114 @default.
- W4294775907 cites W3213440098 @default.
- W4294775907 cites W4210894108 @default.
- W4294775907 cites W4226327907 @default.
- W4294775907 cites W4282978479 @default.
- W4294775907 doi "https://doi.org/10.3233/thc-220114" @default.
- W4294775907 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36093719" @default.
- W4294775907 hasPublicationYear "2022" @default.
- W4294775907 type Work @default.
- W4294775907 citedByCount "3" @default.
- W4294775907 countsByYear W42947759072023 @default.
- W4294775907 crossrefType "journal-article" @default.
- W4294775907 hasAuthorship W4294775907A5007043168 @default.
- W4294775907 hasAuthorship W4294775907A5009838892 @default.
- W4294775907 hasAuthorship W4294775907A5020820998 @default.
- W4294775907 hasAuthorship W4294775907A5027383822 @default.
- W4294775907 hasAuthorship W4294775907A5067213990 @default.
- W4294775907 hasBestOaLocation W42947759071 @default.
- W4294775907 hasConcept C116675565 @default.
- W4294775907 hasConcept C116834253 @default.
- W4294775907 hasConcept C119857082 @default.
- W4294775907 hasConcept C12267149 @default.
- W4294775907 hasConcept C142724271 @default.
- W4294775907 hasConcept C150899416 @default.
- W4294775907 hasConcept C153180895 @default.
- W4294775907 hasConcept C154945302 @default.
- W4294775907 hasConcept C162324750 @default.
- W4294775907 hasConcept C176217482 @default.
- W4294775907 hasConcept C21547014 @default.
- W4294775907 hasConcept C2779134260 @default.
- W4294775907 hasConcept C3006700255 @default.
- W4294775907 hasConcept C3007834351 @default.
- W4294775907 hasConcept C3008058167 @default.
- W4294775907 hasConcept C41008148 @default.
- W4294775907 hasConcept C43346845 @default.
- W4294775907 hasConcept C524204448 @default.
- W4294775907 hasConcept C52622490 @default.
- W4294775907 hasConcept C58471807 @default.
- W4294775907 hasConcept C59822182 @default.
- W4294775907 hasConcept C71924100 @default.
- W4294775907 hasConcept C86803240 @default.
- W4294775907 hasConcept C95623464 @default.
- W4294775907 hasConceptScore W4294775907C116675565 @default.
- W4294775907 hasConceptScore W4294775907C116834253 @default.
- W4294775907 hasConceptScore W4294775907C119857082 @default.
- W4294775907 hasConceptScore W4294775907C12267149 @default.
- W4294775907 hasConceptScore W4294775907C142724271 @default.
- W4294775907 hasConceptScore W4294775907C150899416 @default.
- W4294775907 hasConceptScore W4294775907C153180895 @default.
- W4294775907 hasConceptScore W4294775907C154945302 @default.
- W4294775907 hasConceptScore W4294775907C162324750 @default.
- W4294775907 hasConceptScore W4294775907C176217482 @default.
- W4294775907 hasConceptScore W4294775907C21547014 @default.
- W4294775907 hasConceptScore W4294775907C2779134260 @default.
- W4294775907 hasConceptScore W4294775907C3006700255 @default.
- W4294775907 hasConceptScore W4294775907C3007834351 @default.
- W4294775907 hasConceptScore W4294775907C3008058167 @default.