Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294811272> ?p ?o ?g. }
- W4294811272 endingPage "1941" @default.
- W4294811272 startingPage "1925" @default.
- W4294811272 abstract "Network slicing is a critical technique for 5G communications that covers radio access network (RAN), edge, transport and core slicing. The evolving network architecture requires the orchestration of multiple network resources such as radio and cache resources. In recent years, machine learning (ML) techniques have been widely applied for network management. However, most existing works do not take advantage of the knowledge transfer capability in ML. In this paper, we propose a deep transfer reinforcement learning (DTRL) scheme for joint radio and cache resource allocation to serve 5G RAN slicing. We first define a hierarchical architecture for joint resource allocation. Then we propose two DTRL algorithms: Q-value-based deep transfer reinforcement learning (QDTRL) and action selection-based deep transfer reinforcement learning (ADTRL). In the proposed schemes, learner agents utilize expert agents’ knowledge to improve their performance on current tasks. The proposed algorithms are compared with both the model-free exploration bonus deep Q-learning (EB-DQN) and the model-based priority proportional fairness and time-to-live (PPF-TTL) algorithms. Compared with EB-DQN, our proposed DTRL-based method presents 21.4% lower delay for Ultra Reliable Low Latency Communications (URLLC) slice and 22.4% higher throughput for enhanced Mobile Broad Band (eMBB) slice, while achieving significantly faster convergence than EB-DQN. Moreover, 40.8% lower URLLC delay and 59.8% higher eMBB throughput are observed with respect to PPF-TTL." @default.
- W4294811272 created "2022-09-06" @default.
- W4294811272 creator A5006620409 @default.
- W4294811272 creator A5080850676 @default.
- W4294811272 creator A5089891162 @default.
- W4294811272 date "2022-12-01" @default.
- W4294811272 modified "2023-09-29" @default.
- W4294811272 title "Learning From Peers: Deep Transfer Reinforcement Learning for Joint Radio and Cache Resource Allocation in 5G RAN Slicing" @default.
- W4294811272 cites W1504915502 @default.
- W4294811272 cites W2028344184 @default.
- W4294811272 cites W2136848157 @default.
- W4294811272 cites W2145339207 @default.
- W4294811272 cites W2164114810 @default.
- W4294811272 cites W2165698076 @default.
- W4294811272 cites W2605344455 @default.
- W4294811272 cites W2624944960 @default.
- W4294811272 cites W2794138919 @default.
- W4294811272 cites W2794673877 @default.
- W4294811272 cites W2804647677 @default.
- W4294811272 cites W2805173205 @default.
- W4294811272 cites W2891286892 @default.
- W4294811272 cites W2914785290 @default.
- W4294811272 cites W2951714068 @default.
- W4294811272 cites W2963334314 @default.
- W4294811272 cites W2963829278 @default.
- W4294811272 cites W2964000600 @default.
- W4294811272 cites W2970759804 @default.
- W4294811272 cites W2989639897 @default.
- W4294811272 cites W2989734355 @default.
- W4294811272 cites W3013469985 @default.
- W4294811272 cites W3023434827 @default.
- W4294811272 cites W3039237082 @default.
- W4294811272 cites W3091704528 @default.
- W4294811272 cites W3113734015 @default.
- W4294811272 cites W3133697250 @default.
- W4294811272 cites W3205905181 @default.
- W4294811272 cites W3209687765 @default.
- W4294811272 cites W3217599394 @default.
- W4294811272 cites W2136547295 @default.
- W4294811272 doi "https://doi.org/10.1109/tccn.2022.3204572" @default.
- W4294811272 hasPublicationYear "2022" @default.
- W4294811272 type Work @default.
- W4294811272 citedByCount "5" @default.
- W4294811272 countsByYear W42948112722022 @default.
- W4294811272 countsByYear W42948112722023 @default.
- W4294811272 crossrefType "journal-article" @default.
- W4294811272 hasAuthorship W4294811272A5006620409 @default.
- W4294811272 hasAuthorship W4294811272A5080850676 @default.
- W4294811272 hasAuthorship W4294811272A5089891162 @default.
- W4294811272 hasBestOaLocation W42948112722 @default.
- W4294811272 hasConcept C106365562 @default.
- W4294811272 hasConcept C115537543 @default.
- W4294811272 hasConcept C120314980 @default.
- W4294811272 hasConcept C150899416 @default.
- W4294811272 hasConcept C154945302 @default.
- W4294811272 hasConcept C157764524 @default.
- W4294811272 hasConcept C207029474 @default.
- W4294811272 hasConcept C29202148 @default.
- W4294811272 hasConcept C31258907 @default.
- W4294811272 hasConcept C41008148 @default.
- W4294811272 hasConcept C555944384 @default.
- W4294811272 hasConcept C68649174 @default.
- W4294811272 hasConcept C76155785 @default.
- W4294811272 hasConcept C97541855 @default.
- W4294811272 hasConceptScore W4294811272C106365562 @default.
- W4294811272 hasConceptScore W4294811272C115537543 @default.
- W4294811272 hasConceptScore W4294811272C120314980 @default.
- W4294811272 hasConceptScore W4294811272C150899416 @default.
- W4294811272 hasConceptScore W4294811272C154945302 @default.
- W4294811272 hasConceptScore W4294811272C157764524 @default.
- W4294811272 hasConceptScore W4294811272C207029474 @default.
- W4294811272 hasConceptScore W4294811272C29202148 @default.
- W4294811272 hasConceptScore W4294811272C31258907 @default.
- W4294811272 hasConceptScore W4294811272C41008148 @default.
- W4294811272 hasConceptScore W4294811272C555944384 @default.
- W4294811272 hasConceptScore W4294811272C68649174 @default.
- W4294811272 hasConceptScore W4294811272C76155785 @default.
- W4294811272 hasConceptScore W4294811272C97541855 @default.
- W4294811272 hasFunder F4320306076 @default.
- W4294811272 hasFunder F4320334593 @default.
- W4294811272 hasIssue "4" @default.
- W4294811272 hasLocation W42948112721 @default.
- W4294811272 hasLocation W42948112722 @default.
- W4294811272 hasOpenAccess W4294811272 @default.
- W4294811272 hasPrimaryLocation W42948112721 @default.
- W4294811272 hasRelatedWork W1598943142 @default.
- W4294811272 hasRelatedWork W2073362786 @default.
- W4294811272 hasRelatedWork W3089192431 @default.
- W4294811272 hasRelatedWork W3139193008 @default.
- W4294811272 hasRelatedWork W3142082549 @default.
- W4294811272 hasRelatedWork W3197830211 @default.
- W4294811272 hasRelatedWork W3209094908 @default.
- W4294811272 hasRelatedWork W3212159549 @default.
- W4294811272 hasRelatedWork W4289712363 @default.
- W4294811272 hasRelatedWork W4295941380 @default.
- W4294811272 hasVolume "8" @default.
- W4294811272 isParatext "false" @default.
- W4294811272 isRetracted "false" @default.