Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294811532> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4294811532 abstract "Machine learning techniques are widely used for discovering meaningful patterns and classifying real-world data. These datasets may be large and complex, so feature selection is the primary strategy for reducing the dimension of the data, with the general goal of reducing the amount of redundant and disruptive features in a dataset for fast and efficient data analysis without sacrificing significant predictive model performance. Due to exponentially high search space, feature selection is a complex optimization problem. It is practically impossible to evaluate all of the feature subsets manually. Nature-inspired optimization is widely used for this due to its inherent capability, and it solves feature selection tasks as a single objective optimization problem. However, the main issue is their frequent premature convergence, which results in an inadequate contribution to data mining. Even the majority of existing optimizers are not adaptive in nature. As a result, in this paper, we proposed QL-SSA, which combines Reinforcement Learning and the Squirrel Search Algorithm, making it more adaptive and robust for feature selection by maintaining a good balance between exploration and exploitation steps. It is tested on 20 real-world benchmark datasets using two classifiers, and the results show that it outperforms the baseline optimizer in most cases." @default.
- W4294811532 created "2022-09-06" @default.
- W4294811532 creator A5046454544 @default.
- W4294811532 creator A5063452654 @default.
- W4294811532 creator A5084923728 @default.
- W4294811532 date "2022-07-18" @default.
- W4294811532 modified "2023-09-27" @default.
- W4294811532 title "QL-SSA: An Adaptive Q-Learning based Squirrel Search Algorithm for Feature Selection" @default.
- W4294811532 cites W1480376833 @default.
- W4294811532 cites W2038567802 @default.
- W4294811532 cites W2117613928 @default.
- W4294811532 cites W2130416410 @default.
- W4294811532 cites W2397435399 @default.
- W4294811532 cites W2550999023 @default.
- W4294811532 cites W2791899797 @default.
- W4294811532 cites W3015247220 @default.
- W4294811532 cites W3027406032 @default.
- W4294811532 cites W3041308951 @default.
- W4294811532 cites W4200137285 @default.
- W4294811532 cites W4240813273 @default.
- W4294811532 doi "https://doi.org/10.1109/cec55065.2022.9870311" @default.
- W4294811532 hasPublicationYear "2022" @default.
- W4294811532 type Work @default.
- W4294811532 citedByCount "0" @default.
- W4294811532 crossrefType "proceedings-article" @default.
- W4294811532 hasAuthorship W4294811532A5046454544 @default.
- W4294811532 hasAuthorship W4294811532A5063452654 @default.
- W4294811532 hasAuthorship W4294811532A5084923728 @default.
- W4294811532 hasConcept C119857082 @default.
- W4294811532 hasConcept C124101348 @default.
- W4294811532 hasConcept C13280743 @default.
- W4294811532 hasConcept C138885662 @default.
- W4294811532 hasConcept C148483581 @default.
- W4294811532 hasConcept C153180895 @default.
- W4294811532 hasConcept C154945302 @default.
- W4294811532 hasConcept C162324750 @default.
- W4294811532 hasConcept C185798385 @default.
- W4294811532 hasConcept C202444582 @default.
- W4294811532 hasConcept C205649164 @default.
- W4294811532 hasConcept C2776401178 @default.
- W4294811532 hasConcept C2777303404 @default.
- W4294811532 hasConcept C33676613 @default.
- W4294811532 hasConcept C33923547 @default.
- W4294811532 hasConcept C41008148 @default.
- W4294811532 hasConcept C41895202 @default.
- W4294811532 hasConcept C50522688 @default.
- W4294811532 hasConcept C70518039 @default.
- W4294811532 hasConcept C81917197 @default.
- W4294811532 hasConcept C97541855 @default.
- W4294811532 hasConceptScore W4294811532C119857082 @default.
- W4294811532 hasConceptScore W4294811532C124101348 @default.
- W4294811532 hasConceptScore W4294811532C13280743 @default.
- W4294811532 hasConceptScore W4294811532C138885662 @default.
- W4294811532 hasConceptScore W4294811532C148483581 @default.
- W4294811532 hasConceptScore W4294811532C153180895 @default.
- W4294811532 hasConceptScore W4294811532C154945302 @default.
- W4294811532 hasConceptScore W4294811532C162324750 @default.
- W4294811532 hasConceptScore W4294811532C185798385 @default.
- W4294811532 hasConceptScore W4294811532C202444582 @default.
- W4294811532 hasConceptScore W4294811532C205649164 @default.
- W4294811532 hasConceptScore W4294811532C2776401178 @default.
- W4294811532 hasConceptScore W4294811532C2777303404 @default.
- W4294811532 hasConceptScore W4294811532C33676613 @default.
- W4294811532 hasConceptScore W4294811532C33923547 @default.
- W4294811532 hasConceptScore W4294811532C41008148 @default.
- W4294811532 hasConceptScore W4294811532C41895202 @default.
- W4294811532 hasConceptScore W4294811532C50522688 @default.
- W4294811532 hasConceptScore W4294811532C70518039 @default.
- W4294811532 hasConceptScore W4294811532C81917197 @default.
- W4294811532 hasConceptScore W4294811532C97541855 @default.
- W4294811532 hasLocation W42948115321 @default.
- W4294811532 hasOpenAccess W4294811532 @default.
- W4294811532 hasPrimaryLocation W42948115321 @default.
- W4294811532 hasRelatedWork W2144653557 @default.
- W4294811532 hasRelatedWork W2286904880 @default.
- W4294811532 hasRelatedWork W2375828317 @default.
- W4294811532 hasRelatedWork W2384303144 @default.
- W4294811532 hasRelatedWork W2385233088 @default.
- W4294811532 hasRelatedWork W2540349324 @default.
- W4294811532 hasRelatedWork W3152534415 @default.
- W4294811532 hasRelatedWork W3210877509 @default.
- W4294811532 hasRelatedWork W4287239680 @default.
- W4294811532 hasRelatedWork W4312247183 @default.
- W4294811532 isParatext "false" @default.
- W4294811532 isRetracted "false" @default.
- W4294811532 workType "article" @default.