Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294811657> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4294811657 abstract "One possible approach to deflect the trajectory of an asteroid on a collision course with the Earth, and prevent a potentially devastating impact, is the use of a kinetic impactor. The upcoming NASA DART and ESA Hera space missions will be the first to study and demonstrate this technique, by driving a spacecraft into the moon of a binary asteroid system with the aim of altering its momentum, and knocking it off course. In this work, we seek to predict critical parameters associated with such an impact, namely the momentum transfer efficiency and axial ratio of the target body, based on light curve data observed from ground before and after the impact in order to give insights into the real effect of the deflection effort. We present here our approach to this problem, which we address from a purely data-driven perspective based on simulated data provided as a part of the Andrea Milani Planetary Defence Challenge, organised by the EU H2020 Stardust-R research network in conjunction with ESA. Formulating the problem as a time series regression task, we develop an end-to-end deep learning pipeline in which we apply the latest advances in deep learning for time series, such as the use of the Transformer architecture as well as ensembling and self-supervised learning techniques. Exploiting these techniques for the challenge, we achieved second place out of the student teams, and fifth place overall without relying on any a priori knowledge of the physics of the asteroid system." @default.
- W4294811657 created "2022-09-06" @default.
- W4294811657 creator A5030022807 @default.
- W4294811657 creator A5043233715 @default.
- W4294811657 creator A5055245701 @default.
- W4294811657 creator A5084507504 @default.
- W4294811657 date "2022-07-18" @default.
- W4294811657 modified "2023-10-03" @default.
- W4294811657 title "Predicting the effects of kinetic impactors on asteroid deflection using end-to-end deep learning" @default.
- W4294811657 cites W2014703566 @default.
- W4294811657 cites W2778539924 @default.
- W4294811657 cites W2883653702 @default.
- W4294811657 cites W3083891030 @default.
- W4294811657 cites W3178956527 @default.
- W4294811657 doi "https://doi.org/10.1109/cec55065.2022.9870215" @default.
- W4294811657 hasPublicationYear "2022" @default.
- W4294811657 type Work @default.
- W4294811657 citedByCount "0" @default.
- W4294811657 crossrefType "proceedings-article" @default.
- W4294811657 hasAuthorship W4294811657A5030022807 @default.
- W4294811657 hasAuthorship W4294811657A5043233715 @default.
- W4294811657 hasAuthorship W4294811657A5055245701 @default.
- W4294811657 hasAuthorship W4294811657A5084507504 @default.
- W4294811657 hasConcept C108583219 @default.
- W4294811657 hasConcept C111472728 @default.
- W4294811657 hasConcept C121332964 @default.
- W4294811657 hasConcept C121704057 @default.
- W4294811657 hasConcept C127413603 @default.
- W4294811657 hasConcept C1276947 @default.
- W4294811657 hasConcept C138885662 @default.
- W4294811657 hasConcept C146978453 @default.
- W4294811657 hasConcept C154945302 @default.
- W4294811657 hasConcept C187107819 @default.
- W4294811657 hasConcept C2781355719 @default.
- W4294811657 hasConcept C29829512 @default.
- W4294811657 hasConcept C38652104 @default.
- W4294811657 hasConcept C41008148 @default.
- W4294811657 hasConcept C58142911 @default.
- W4294811657 hasConcept C74296488 @default.
- W4294811657 hasConcept C74650414 @default.
- W4294811657 hasConcept C75553542 @default.
- W4294811657 hasConceptScore W4294811657C108583219 @default.
- W4294811657 hasConceptScore W4294811657C111472728 @default.
- W4294811657 hasConceptScore W4294811657C121332964 @default.
- W4294811657 hasConceptScore W4294811657C121704057 @default.
- W4294811657 hasConceptScore W4294811657C127413603 @default.
- W4294811657 hasConceptScore W4294811657C1276947 @default.
- W4294811657 hasConceptScore W4294811657C138885662 @default.
- W4294811657 hasConceptScore W4294811657C146978453 @default.
- W4294811657 hasConceptScore W4294811657C154945302 @default.
- W4294811657 hasConceptScore W4294811657C187107819 @default.
- W4294811657 hasConceptScore W4294811657C2781355719 @default.
- W4294811657 hasConceptScore W4294811657C29829512 @default.
- W4294811657 hasConceptScore W4294811657C38652104 @default.
- W4294811657 hasConceptScore W4294811657C41008148 @default.
- W4294811657 hasConceptScore W4294811657C58142911 @default.
- W4294811657 hasConceptScore W4294811657C74296488 @default.
- W4294811657 hasConceptScore W4294811657C74650414 @default.
- W4294811657 hasConceptScore W4294811657C75553542 @default.
- W4294811657 hasLocation W42948116571 @default.
- W4294811657 hasOpenAccess W4294811657 @default.
- W4294811657 hasPrimaryLocation W42948116571 @default.
- W4294811657 hasRelatedWork W2076657540 @default.
- W4294811657 hasRelatedWork W2122248836 @default.
- W4294811657 hasRelatedWork W2123252002 @default.
- W4294811657 hasRelatedWork W2123915128 @default.
- W4294811657 hasRelatedWork W2124378603 @default.
- W4294811657 hasRelatedWork W2135375372 @default.
- W4294811657 hasRelatedWork W2238221094 @default.
- W4294811657 hasRelatedWork W2327242387 @default.
- W4294811657 hasRelatedWork W2951204465 @default.
- W4294811657 hasRelatedWork W3154997515 @default.
- W4294811657 isParatext "false" @default.
- W4294811657 isRetracted "false" @default.
- W4294811657 workType "article" @default.