Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294817154> ?p ?o ?g. }
- W4294817154 endingPage "12918" @default.
- W4294817154 startingPage "12907" @default.
- W4294817154 abstract "Machine learning has had a significant impact on the value of spectroscopic characterization tools, particularly in biomedical applications, due to its ability to detect latent patterns within complex spectral data. However, it often requires extensive data preprocessing, including baseline correction and denoising, which can lead to an unintentional bias during classification. To address this, we developed two deep learning methods capable of fully preprocessing raw Raman spectroscopy data without any human input. First, cascaded deep convolutional neural networks (CNN) based on either ResNet or U-Net architectures were trained on randomly generated spectra with augmented defects. Then, they were tested using simulated Raman spectra, surface-enhanced Raman spectroscopy (SERS) imaging of chemical species, low resolution Raman spectra of human bladder cancer tissue, and finally, classification of SERS spectra from human placental extracellular vesicles (EVs). Both approaches resulted in faster training and complete spectral preprocessing in a single step, with more speed, defect tolerance, and classification accuracy compared to conventional methods. These findings indicate that cascaded CNN preprocessing is ideal for biomedical Raman spectroscopy applications in which large numbers of heterogeneous spectra with diverse defects need to be automatically, rapidly, and reproducibly preprocessed." @default.
- W4294817154 created "2022-09-06" @default.
- W4294817154 creator A5005116033 @default.
- W4294817154 creator A5010061792 @default.
- W4294817154 creator A5030843016 @default.
- W4294817154 creator A5030896259 @default.
- W4294817154 creator A5056101043 @default.
- W4294817154 creator A5079942107 @default.
- W4294817154 date "2022-09-06" @default.
- W4294817154 modified "2023-10-17" @default.
- W4294817154 title "Cascaded Deep Convolutional Neural Networks as Improved Methods of Preprocessing Raman Spectroscopy Data" @default.
- W4294817154 cites W1967542684 @default.
- W4294817154 cites W1980874564 @default.
- W4294817154 cites W2011301426 @default.
- W4294817154 cites W2015159529 @default.
- W4294817154 cites W2016365402 @default.
- W4294817154 cites W2029282662 @default.
- W4294817154 cites W2039897852 @default.
- W4294817154 cites W2053222158 @default.
- W4294817154 cites W2070137508 @default.
- W4294817154 cites W2089370605 @default.
- W4294817154 cites W2109606373 @default.
- W4294817154 cites W2112805666 @default.
- W4294817154 cites W2150294514 @default.
- W4294817154 cites W2160149716 @default.
- W4294817154 cites W2194775991 @default.
- W4294817154 cites W2253744318 @default.
- W4294817154 cites W2309690315 @default.
- W4294817154 cites W2752532133 @default.
- W4294817154 cites W2779664720 @default.
- W4294817154 cites W2803564954 @default.
- W4294817154 cites W2944152271 @default.
- W4294817154 cites W2982397699 @default.
- W4294817154 cites W2992742255 @default.
- W4294817154 cites W3001461994 @default.
- W4294817154 cites W3002922465 @default.
- W4294817154 cites W3097336164 @default.
- W4294817154 cites W3103145119 @default.
- W4294817154 cites W3120420778 @default.
- W4294817154 cites W3123379167 @default.
- W4294817154 cites W3129227081 @default.
- W4294817154 cites W3158186962 @default.
- W4294817154 cites W3172489799 @default.
- W4294817154 cites W3177806325 @default.
- W4294817154 cites W3212784736 @default.
- W4294817154 cites W3217467689 @default.
- W4294817154 cites W4226353433 @default.
- W4294817154 cites W4238768614 @default.
- W4294817154 cites W4255766820 @default.
- W4294817154 cites W4281734425 @default.
- W4294817154 cites W4285796506 @default.
- W4294817154 doi "https://doi.org/10.1021/acs.analchem.2c03082" @default.
- W4294817154 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36067379" @default.
- W4294817154 hasPublicationYear "2022" @default.
- W4294817154 type Work @default.
- W4294817154 citedByCount "4" @default.
- W4294817154 countsByYear W42948171542023 @default.
- W4294817154 crossrefType "journal-article" @default.
- W4294817154 hasAuthorship W4294817154A5005116033 @default.
- W4294817154 hasAuthorship W4294817154A5010061792 @default.
- W4294817154 hasAuthorship W4294817154A5030843016 @default.
- W4294817154 hasAuthorship W4294817154A5030896259 @default.
- W4294817154 hasAuthorship W4294817154A5056101043 @default.
- W4294817154 hasAuthorship W4294817154A5079942107 @default.
- W4294817154 hasConcept C10551718 @default.
- W4294817154 hasConcept C108583219 @default.
- W4294817154 hasConcept C120665830 @default.
- W4294817154 hasConcept C121332964 @default.
- W4294817154 hasConcept C153180895 @default.
- W4294817154 hasConcept C154945302 @default.
- W4294817154 hasConcept C169573571 @default.
- W4294817154 hasConcept C185592680 @default.
- W4294817154 hasConcept C186060115 @default.
- W4294817154 hasConcept C27438332 @default.
- W4294817154 hasConcept C2777790068 @default.
- W4294817154 hasConcept C32891209 @default.
- W4294817154 hasConcept C34736171 @default.
- W4294817154 hasConcept C40003534 @default.
- W4294817154 hasConcept C41008148 @default.
- W4294817154 hasConcept C62520636 @default.
- W4294817154 hasConcept C81363708 @default.
- W4294817154 hasConcept C86803240 @default.
- W4294817154 hasConceptScore W4294817154C10551718 @default.
- W4294817154 hasConceptScore W4294817154C108583219 @default.
- W4294817154 hasConceptScore W4294817154C120665830 @default.
- W4294817154 hasConceptScore W4294817154C121332964 @default.
- W4294817154 hasConceptScore W4294817154C153180895 @default.
- W4294817154 hasConceptScore W4294817154C154945302 @default.
- W4294817154 hasConceptScore W4294817154C169573571 @default.
- W4294817154 hasConceptScore W4294817154C185592680 @default.
- W4294817154 hasConceptScore W4294817154C186060115 @default.
- W4294817154 hasConceptScore W4294817154C27438332 @default.
- W4294817154 hasConceptScore W4294817154C2777790068 @default.
- W4294817154 hasConceptScore W4294817154C32891209 @default.
- W4294817154 hasConceptScore W4294817154C34736171 @default.
- W4294817154 hasConceptScore W4294817154C40003534 @default.
- W4294817154 hasConceptScore W4294817154C41008148 @default.
- W4294817154 hasConceptScore W4294817154C62520636 @default.