Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294839542> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4294839542 endingPage "109610" @default.
- W4294839542 startingPage "109610" @default.
- W4294839542 abstract "Solving complex real-world optimization problems is a computationally demanding task. To solve it efficiently and effectively, one must possess expert knowledge in various fields (problem domain knowledge, optimization, parallel and distributed computing) and appropriate expensive software and hardware resources. In this regard, we present a cloud-native, container-based distributed optimization framework that enables efficient and cost-effective optimization over platforms such as Amazon ECS/EKS, Azure AKS, and on-premise Kubernetes. The solution consists of dozens of microservices scaled out using a specially developed PETAS Auto-scaler based on predictive analytics. Existing schedulers, whether Kubernetes or commercial, do not take into account the specifics of optimization based on evolutionary algorithms. Therefore, their performance is not optimal in terms of results’ delivery time and cloud infrastructure costs. The proposed PETAS Auto-scaler elastically maintains an adequate number of worker pods following the exact pace dictated by the demands of the optimization process. We evaluate the proposed framework’s performance using two real-world computationally demanding optimizations. The first use case belongs to the manufacturing domain and involves optimization of the transportation pallets for train parts. The second use case belongs to the field of automated machine learning and includes neural architecture search and hyperparameter optimization. The results indicate an IaaS cost savings of up to 49% can be achieved, with almost unchanged result delivery time. • A cloud-native, microservice-based software framework for large-scale optimization. • An efficient and cost-effective optimization thanks to PETAS auto-scaler. • PETAS elastically maintains an adequate number of the worker pods. • PETAS uses machine learning techniques to predict workload pattern." @default.
- W4294839542 created "2022-09-07" @default.
- W4294839542 creator A5078189794 @default.
- W4294839542 creator A5089092264 @default.
- W4294839542 date "2022-11-01" @default.
- W4294839542 modified "2023-10-14" @default.
- W4294839542 title "Efficient evolutionary optimization using predictive auto-scaling in containerized environment" @default.
- W4294839542 cites W1831950995 @default.
- W4294839542 cites W2019806023 @default.
- W4294839542 cites W2028243478 @default.
- W4294839542 cites W2029469881 @default.
- W4294839542 cites W2038456806 @default.
- W4294839542 cites W2080046268 @default.
- W4294839542 cites W2089012785 @default.
- W4294839542 cites W2118195127 @default.
- W4294839542 cites W2119814172 @default.
- W4294839542 cites W2126105956 @default.
- W4294839542 cites W2169354676 @default.
- W4294839542 cites W2298036204 @default.
- W4294839542 cites W2484251499 @default.
- W4294839542 cites W2515867195 @default.
- W4294839542 cites W2620934568 @default.
- W4294839542 cites W2724669887 @default.
- W4294839542 cites W2864497135 @default.
- W4294839542 cites W2896841865 @default.
- W4294839542 cites W2924474549 @default.
- W4294839542 cites W2963879366 @default.
- W4294839542 cites W3000679898 @default.
- W4294839542 cites W3014805346 @default.
- W4294839542 cites W3037435467 @default.
- W4294839542 cites W3096645128 @default.
- W4294839542 cites W3120976575 @default.
- W4294839542 doi "https://doi.org/10.1016/j.asoc.2022.109610" @default.
- W4294839542 hasPublicationYear "2022" @default.
- W4294839542 type Work @default.
- W4294839542 citedByCount "3" @default.
- W4294839542 countsByYear W42948395422023 @default.
- W4294839542 crossrefType "journal-article" @default.
- W4294839542 hasAuthorship W4294839542A5078189794 @default.
- W4294839542 hasAuthorship W4294839542A5089092264 @default.
- W4294839542 hasConcept C126255220 @default.
- W4294839542 hasConcept C154945302 @default.
- W4294839542 hasConcept C159149176 @default.
- W4294839542 hasConcept C2524010 @default.
- W4294839542 hasConcept C33923547 @default.
- W4294839542 hasConcept C41008148 @default.
- W4294839542 hasConcept C99844830 @default.
- W4294839542 hasConceptScore W4294839542C126255220 @default.
- W4294839542 hasConceptScore W4294839542C154945302 @default.
- W4294839542 hasConceptScore W4294839542C159149176 @default.
- W4294839542 hasConceptScore W4294839542C2524010 @default.
- W4294839542 hasConceptScore W4294839542C33923547 @default.
- W4294839542 hasConceptScore W4294839542C41008148 @default.
- W4294839542 hasConceptScore W4294839542C99844830 @default.
- W4294839542 hasLocation W42948395421 @default.
- W4294839542 hasOpenAccess W4294839542 @default.
- W4294839542 hasPrimaryLocation W42948395421 @default.
- W4294839542 hasRelatedWork W1996526174 @default.
- W4294839542 hasRelatedWork W2130043461 @default.
- W4294839542 hasRelatedWork W2350741829 @default.
- W4294839542 hasRelatedWork W2358668433 @default.
- W4294839542 hasRelatedWork W2376932109 @default.
- W4294839542 hasRelatedWork W2382290278 @default.
- W4294839542 hasRelatedWork W2390279801 @default.
- W4294839542 hasRelatedWork W2748952813 @default.
- W4294839542 hasRelatedWork W2887328214 @default.
- W4294839542 hasRelatedWork W2899084033 @default.
- W4294839542 hasVolume "129" @default.
- W4294839542 isParatext "false" @default.
- W4294839542 isRetracted "false" @default.
- W4294839542 workType "article" @default.