Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294845098> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4294845098 abstract "Abstract Background Automatic and accurate estimation of disease severity is critical for disease management and yield loss prediction. Conventional disease severity estimation is performed using images with simple backgrounds, which is limited in practical applications. Thus, there is an urgent need to develop a method for estimating the disease severity of plants based on leaf images captured in field conditions, which is very challenging since the intensity of sunlight is constantly changing, and the image background is complicated. Results This study developed a simple and accurate image-based disease severity estimation method using an optimized neural network. A hybrid attention and transfer learning optimized semantic segmentation model was proposed to obtain the disease segmentation map. The severity was calculated by the ratio of lesion pixels to leaf pixels. The proposed method was validated using cucumber downy mildew, and powdery mildew leaves collected under natural conditions. The results showed that hybrid attention with the interaction of spatial attention and channel attention can extract fine lesion and leaf features, and transfer learning can further improve the segmentation accuracy of the model. The proposed method can accurately segment healthy leaves and lesions (MIoU = 81.23%, FWIoU = 91.89%). In addition, the severity of cucumber leaf disease was accurately estimated (R 2 = 0.9578, RMSE = 1.1385). Moreover, the proposed model was compared with six different backbones and four semantic segmentation models. The results show that the proposed model outperforms the compared models under complex conditions, and can refine lesion segmentation and accurately estimate the disease severity. Conclusions The proposed method was an efficient tool for disease severity estimation in field conditions. This study can facilitate the implementation of artificial intelligence for rapid disease severity estimation and control in agriculture." @default.
- W4294845098 created "2022-09-07" @default.
- W4294845098 creator A5034995105 @default.
- W4294845098 creator A5043393347 @default.
- W4294845098 creator A5047058981 @default.
- W4294845098 creator A5065422305 @default.
- W4294845098 creator A5078760931 @default.
- W4294845098 date "2022-09-06" @default.
- W4294845098 modified "2023-10-14" @default.
- W4294845098 title "Attention-optimized DeepLab V3 + for automatic estimation of cucumber disease severity" @default.
- W4294845098 cites W2194775991 @default.
- W4294845098 cites W2395611524 @default.
- W4294845098 cites W2504081689 @default.
- W4294845098 cites W2591423802 @default.
- W4294845098 cites W2733343268 @default.
- W4294845098 cites W2884585870 @default.
- W4294845098 cites W2888281815 @default.
- W4294845098 cites W2912398505 @default.
- W4294845098 cites W2913766929 @default.
- W4294845098 cites W2963163009 @default.
- W4294845098 cites W2963420686 @default.
- W4294845098 cites W2963881378 @default.
- W4294845098 cites W2964309882 @default.
- W4294845098 cites W2977448057 @default.
- W4294845098 cites W2982083293 @default.
- W4294845098 cites W2998829203 @default.
- W4294845098 cites W3006828940 @default.
- W4294845098 cites W3033469124 @default.
- W4294845098 cites W3036712625 @default.
- W4294845098 cites W3082289303 @default.
- W4294845098 cites W3087173802 @default.
- W4294845098 cites W3091959465 @default.
- W4294845098 cites W3093870111 @default.
- W4294845098 cites W3094775289 @default.
- W4294845098 cites W3119027282 @default.
- W4294845098 cites W3119205652 @default.
- W4294845098 cites W3119228887 @default.
- W4294845098 cites W3126335003 @default.
- W4294845098 cites W3136213652 @default.
- W4294845098 cites W3137819046 @default.
- W4294845098 cites W3176127386 @default.
- W4294845098 cites W3189938546 @default.
- W4294845098 cites W3192504607 @default.
- W4294845098 cites W3197413489 @default.
- W4294845098 cites W4206357035 @default.
- W4294845098 doi "https://doi.org/10.1186/s13007-022-00941-8" @default.
- W4294845098 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36068606" @default.
- W4294845098 hasPublicationYear "2022" @default.
- W4294845098 type Work @default.
- W4294845098 citedByCount "7" @default.
- W4294845098 countsByYear W42948450982023 @default.
- W4294845098 crossrefType "journal-article" @default.
- W4294845098 hasAuthorship W4294845098A5034995105 @default.
- W4294845098 hasAuthorship W4294845098A5043393347 @default.
- W4294845098 hasAuthorship W4294845098A5047058981 @default.
- W4294845098 hasAuthorship W4294845098A5065422305 @default.
- W4294845098 hasAuthorship W4294845098A5078760931 @default.
- W4294845098 hasBestOaLocation W42948450981 @default.
- W4294845098 hasConcept C124504099 @default.
- W4294845098 hasConcept C150899416 @default.
- W4294845098 hasConcept C153180895 @default.
- W4294845098 hasConcept C154945302 @default.
- W4294845098 hasConcept C160633673 @default.
- W4294845098 hasConcept C2779336322 @default.
- W4294845098 hasConcept C41008148 @default.
- W4294845098 hasConcept C6557445 @default.
- W4294845098 hasConcept C86803240 @default.
- W4294845098 hasConcept C89600930 @default.
- W4294845098 hasConceptScore W4294845098C124504099 @default.
- W4294845098 hasConceptScore W4294845098C150899416 @default.
- W4294845098 hasConceptScore W4294845098C153180895 @default.
- W4294845098 hasConceptScore W4294845098C154945302 @default.
- W4294845098 hasConceptScore W4294845098C160633673 @default.
- W4294845098 hasConceptScore W4294845098C2779336322 @default.
- W4294845098 hasConceptScore W4294845098C41008148 @default.
- W4294845098 hasConceptScore W4294845098C6557445 @default.
- W4294845098 hasConceptScore W4294845098C86803240 @default.
- W4294845098 hasConceptScore W4294845098C89600930 @default.
- W4294845098 hasIssue "1" @default.
- W4294845098 hasLocation W42948450981 @default.
- W4294845098 hasLocation W42948450982 @default.
- W4294845098 hasLocation W42948450983 @default.
- W4294845098 hasOpenAccess W4294845098 @default.
- W4294845098 hasPrimaryLocation W42948450981 @default.
- W4294845098 hasRelatedWork W134976887 @default.
- W4294845098 hasRelatedWork W2136485282 @default.
- W4294845098 hasRelatedWork W2138214894 @default.
- W4294845098 hasRelatedWork W2162802639 @default.
- W4294845098 hasRelatedWork W2507402573 @default.
- W4294845098 hasRelatedWork W2546871836 @default.
- W4294845098 hasRelatedWork W2549765251 @default.
- W4294845098 hasRelatedWork W3027394838 @default.
- W4294845098 hasRelatedWork W3161321444 @default.
- W4294845098 hasRelatedWork W4385607619 @default.
- W4294845098 hasVolume "18" @default.
- W4294845098 isParatext "false" @default.
- W4294845098 isRetracted "false" @default.
- W4294845098 workType "article" @default.