Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294879463> ?p ?o ?g. }
- W4294879463 endingPage "368" @default.
- W4294879463 startingPage "360" @default.
- W4294879463 abstract "Convolutional Neural Networks (CNNs) have achieved tremendous success in a number of learning tasks including image classification. Residual-like networks, such as ResNets, mainly focus on the skip connection to avoid gradient vanishing. However, the skip connection mechanism limits the utilization of intermediate features due to simple iterative updates. To mitigate the redundancy of residual-like networks, we design Attentive Feature Integration (AFI) modules, which are widely applicable to most residual-like network architectures, leading to new architectures named AFI-Nets. AFI-Nets explicitly model the correlations among different levels of features and selectively transfer features with a little overhead. AFI-ResNet-152 obtains a 1.24% relative improvement on the ImageNet dataset while decreases the FLOPs by about 10% and the number of parameters by about 9.2% compared to ResNet-152." @default.
- W4294879463 created "2022-09-07" @default.
- W4294879463 creator A5009088280 @default.
- W4294879463 creator A5010510537 @default.
- W4294879463 creator A5016665007 @default.
- W4294879463 creator A5031863894 @default.
- W4294879463 creator A5041333761 @default.
- W4294879463 creator A5051227924 @default.
- W4294879463 creator A5057026309 @default.
- W4294879463 creator A5091813982 @default.
- W4294879463 date "2022-11-01" @default.
- W4294879463 modified "2023-10-17" @default.
- W4294879463 title "AFINet: Attentive Feature Integration Networks for image classification" @default.
- W4294879463 cites W1568165162 @default.
- W4294879463 cites W2097117768 @default.
- W4294879463 cites W2161185676 @default.
- W4294879463 cites W2194775991 @default.
- W4294879463 cites W2475287302 @default.
- W4294879463 cites W2627183927 @default.
- W4294879463 cites W2752782242 @default.
- W4294879463 cites W2883780447 @default.
- W4294879463 cites W2884068670 @default.
- W4294879463 cites W2884585870 @default.
- W4294879463 cites W2922509574 @default.
- W4294879463 cites W2950705418 @default.
- W4294879463 cites W2962858109 @default.
- W4294879463 cites W2963163009 @default.
- W4294879463 cites W2963446712 @default.
- W4294879463 cites W2963495494 @default.
- W4294879463 cites W2966070016 @default.
- W4294879463 cites W2970987838 @default.
- W4294879463 cites W2999653953 @default.
- W4294879463 cites W3034552520 @default.
- W4294879463 cites W3047011367 @default.
- W4294879463 cites W3096244759 @default.
- W4294879463 doi "https://doi.org/10.1016/j.neunet.2022.08.026" @default.
- W4294879463 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36115162" @default.
- W4294879463 hasPublicationYear "2022" @default.
- W4294879463 type Work @default.
- W4294879463 citedByCount "4" @default.
- W4294879463 countsByYear W42948794632023 @default.
- W4294879463 crossrefType "journal-article" @default.
- W4294879463 hasAuthorship W4294879463A5009088280 @default.
- W4294879463 hasAuthorship W4294879463A5010510537 @default.
- W4294879463 hasAuthorship W4294879463A5016665007 @default.
- W4294879463 hasAuthorship W4294879463A5031863894 @default.
- W4294879463 hasAuthorship W4294879463A5041333761 @default.
- W4294879463 hasAuthorship W4294879463A5051227924 @default.
- W4294879463 hasAuthorship W4294879463A5057026309 @default.
- W4294879463 hasAuthorship W4294879463A5091813982 @default.
- W4294879463 hasBestOaLocation W42948794632 @default.
- W4294879463 hasConcept C108583219 @default.
- W4294879463 hasConcept C111919701 @default.
- W4294879463 hasConcept C11413529 @default.
- W4294879463 hasConcept C138885662 @default.
- W4294879463 hasConcept C152124472 @default.
- W4294879463 hasConcept C153180895 @default.
- W4294879463 hasConcept C154945302 @default.
- W4294879463 hasConcept C155512373 @default.
- W4294879463 hasConcept C173608175 @default.
- W4294879463 hasConcept C2776401178 @default.
- W4294879463 hasConcept C2779960059 @default.
- W4294879463 hasConcept C2944601119 @default.
- W4294879463 hasConcept C3826847 @default.
- W4294879463 hasConcept C41008148 @default.
- W4294879463 hasConcept C41895202 @default.
- W4294879463 hasConcept C50644808 @default.
- W4294879463 hasConcept C81363708 @default.
- W4294879463 hasConceptScore W4294879463C108583219 @default.
- W4294879463 hasConceptScore W4294879463C111919701 @default.
- W4294879463 hasConceptScore W4294879463C11413529 @default.
- W4294879463 hasConceptScore W4294879463C138885662 @default.
- W4294879463 hasConceptScore W4294879463C152124472 @default.
- W4294879463 hasConceptScore W4294879463C153180895 @default.
- W4294879463 hasConceptScore W4294879463C154945302 @default.
- W4294879463 hasConceptScore W4294879463C155512373 @default.
- W4294879463 hasConceptScore W4294879463C173608175 @default.
- W4294879463 hasConceptScore W4294879463C2776401178 @default.
- W4294879463 hasConceptScore W4294879463C2779960059 @default.
- W4294879463 hasConceptScore W4294879463C2944601119 @default.
- W4294879463 hasConceptScore W4294879463C3826847 @default.
- W4294879463 hasConceptScore W4294879463C41008148 @default.
- W4294879463 hasConceptScore W4294879463C41895202 @default.
- W4294879463 hasConceptScore W4294879463C50644808 @default.
- W4294879463 hasConceptScore W4294879463C81363708 @default.
- W4294879463 hasLocation W42948794631 @default.
- W4294879463 hasLocation W42948794632 @default.
- W4294879463 hasLocation W42948794633 @default.
- W4294879463 hasOpenAccess W4294879463 @default.
- W4294879463 hasPrimaryLocation W42948794631 @default.
- W4294879463 hasRelatedWork W2274287116 @default.
- W4294879463 hasRelatedWork W2964350391 @default.
- W4294879463 hasRelatedWork W2967403871 @default.
- W4294879463 hasRelatedWork W2983358626 @default.
- W4294879463 hasRelatedWork W2984708981 @default.
- W4294879463 hasRelatedWork W3087144180 @default.
- W4294879463 hasRelatedWork W3160076723 @default.
- W4294879463 hasRelatedWork W3196952692 @default.