Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294883759> ?p ?o ?g. }
- W4294883759 endingPage "123395" @default.
- W4294883759 startingPage "123395" @default.
- W4294883759 abstract "An accurate predictive model of the enhanced pool boiling heat transfer on various surface modifications is essential to operate the pool boiling and design the optimal surface designs. However, the existing predictive models generally predict the enhanced pool boiling heat transfer on various surfaces with very large errors as high as ±50%, mainly due to the complex nature of the pool boiling processes. In this study, we unlock the complex relations among four geometrical, nine thermophysical properties, and two operational conditions to accurately predict the Heat Transfer Coefficient (HTC) on the enhanced surfaces using an optimized Deep Neural Network (DNN) model. The six dimensionless numbers are identified based on geometries, operation conditions, and thermophysical properties, which are used as input parameters for the DNN model for the first time. This results in the Mean Absolute Percentage Error (MAPE) below 5%, compared to the existing empirical correlations having 5.04–45.37% MAPE on the selected 1256 data points. Also, the developed DNN model outperforms the prediction accuracy of the existing correlation for the data in much different experimental conditions, showing the 20% MAPE for the pre-trained DNN model (without additional training) and 38% MAPE for the existing correlation. Moreover, the sensitivity analysis was performed to identify the key dimensionless parameters for the HTC on the enhanced surfaces. The developed DNN model with the dimensionless parameters shed light on understanding the complex pool boiling process on the enhanced surfaces." @default.
- W4294883759 created "2022-09-07" @default.
- W4294883759 creator A5019479431 @default.
- W4294883759 creator A5052316187 @default.
- W4294883759 creator A5083494854 @default.
- W4294883759 date "2022-12-01" @default.
- W4294883759 modified "2023-10-17" @default.
- W4294883759 title "Structural-material-operational performance relationship for pool boiling on enhanced surfaces using deep neural network model" @default.
- W4294883759 cites W1966704300 @default.
- W4294883759 cites W1969740111 @default.
- W4294883759 cites W1976377918 @default.
- W4294883759 cites W1984965687 @default.
- W4294883759 cites W1993915659 @default.
- W4294883759 cites W2000308231 @default.
- W4294883759 cites W2011301426 @default.
- W4294883759 cites W2032124821 @default.
- W4294883759 cites W2034458502 @default.
- W4294883759 cites W2037237146 @default.
- W4294883759 cites W2037924066 @default.
- W4294883759 cites W2041068560 @default.
- W4294883759 cites W2049857783 @default.
- W4294883759 cites W2052826333 @default.
- W4294883759 cites W2059939987 @default.
- W4294883759 cites W2061206689 @default.
- W4294883759 cites W2061703147 @default.
- W4294883759 cites W2064617429 @default.
- W4294883759 cites W2083038142 @default.
- W4294883759 cites W2087282160 @default.
- W4294883759 cites W2089321904 @default.
- W4294883759 cites W2099131010 @default.
- W4294883759 cites W2124392893 @default.
- W4294883759 cites W2174783318 @default.
- W4294883759 cites W2890511330 @default.
- W4294883759 cites W2903404639 @default.
- W4294883759 cites W2922637884 @default.
- W4294883759 cites W2923385676 @default.
- W4294883759 cites W2989993791 @default.
- W4294883759 cites W2990742987 @default.
- W4294883759 cites W2997791226 @default.
- W4294883759 cites W3002227904 @default.
- W4294883759 cites W3021647406 @default.
- W4294883759 cites W3044027755 @default.
- W4294883759 cites W3049553457 @default.
- W4294883759 cites W3073854595 @default.
- W4294883759 cites W3083356801 @default.
- W4294883759 cites W3083393674 @default.
- W4294883759 cites W3104542646 @default.
- W4294883759 cites W3113220261 @default.
- W4294883759 cites W3132176805 @default.
- W4294883759 cites W3134424896 @default.
- W4294883759 cites W3150635270 @default.
- W4294883759 cites W3153000570 @default.
- W4294883759 cites W3168678334 @default.
- W4294883759 cites W3185430492 @default.
- W4294883759 cites W3210705163 @default.
- W4294883759 cites W3212192959 @default.
- W4294883759 cites W3212927320 @default.
- W4294883759 cites W4200558946 @default.
- W4294883759 cites W4205239901 @default.
- W4294883759 cites W4214603041 @default.
- W4294883759 cites W4220769844 @default.
- W4294883759 cites W4281776279 @default.
- W4294883759 doi "https://doi.org/10.1016/j.ijheatmasstransfer.2022.123395" @default.
- W4294883759 hasPublicationYear "2022" @default.
- W4294883759 type Work @default.
- W4294883759 citedByCount "0" @default.
- W4294883759 crossrefType "journal-article" @default.
- W4294883759 hasAuthorship W4294883759A5019479431 @default.
- W4294883759 hasAuthorship W4294883759A5052316187 @default.
- W4294883759 hasAuthorship W4294883759A5083494854 @default.
- W4294883759 hasConcept C105795698 @default.
- W4294883759 hasConcept C11413529 @default.
- W4294883759 hasConcept C119857082 @default.
- W4294883759 hasConcept C121332964 @default.
- W4294883759 hasConcept C122383733 @default.
- W4294883759 hasConcept C127413603 @default.
- W4294883759 hasConcept C139945424 @default.
- W4294883759 hasConcept C150217764 @default.
- W4294883759 hasConcept C154945302 @default.
- W4294883759 hasConcept C157777378 @default.
- W4294883759 hasConcept C186060115 @default.
- W4294883759 hasConcept C192562407 @default.
- W4294883759 hasConcept C21200559 @default.
- W4294883759 hasConcept C24326235 @default.
- W4294883759 hasConcept C24872484 @default.
- W4294883759 hasConcept C2780092901 @default.
- W4294883759 hasConcept C33923547 @default.
- W4294883759 hasConcept C41008148 @default.
- W4294883759 hasConcept C50517652 @default.
- W4294883759 hasConcept C50644808 @default.
- W4294883759 hasConcept C86803240 @default.
- W4294883759 hasConcept C97355855 @default.
- W4294883759 hasConceptScore W4294883759C105795698 @default.
- W4294883759 hasConceptScore W4294883759C11413529 @default.
- W4294883759 hasConceptScore W4294883759C119857082 @default.
- W4294883759 hasConceptScore W4294883759C121332964 @default.
- W4294883759 hasConceptScore W4294883759C122383733 @default.
- W4294883759 hasConceptScore W4294883759C127413603 @default.