Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294904477> ?p ?o ?g. }
- W4294904477 endingPage "127908" @default.
- W4294904477 startingPage "127908" @default.
- W4294904477 abstract "The immediate response to the state disturbances of anaerobic digestion is essential to prevent anaerobic digestion failure. However, frequent monitoring of the state and performance of anaerobic digestion is challenging. Thus, deep learning models were investigated to predict the state and performance variables from online sensor data. The online sensor data, including pH, electric conductivity, and oxidation-reduction potential, were used as the input features to build deep learning models. The state and performance data measured offline were used as the labels. The model performance was compared for several deep learning models of convolutional neural network (CNN), long short-term memory (LSTM), dense layer, and their combinations. The combined model of CNN and bidirectional LSTM was robust and well-generalized in predicting the state and performance variables (R2 = 0.978, root mean square error = 0.031). The combined model is an excellent soft sensor for monitoring the state and performance of anaerobic digestion from electrochemical sensors." @default.
- W4294904477 created "2022-09-07" @default.
- W4294904477 creator A5020214425 @default.
- W4294904477 creator A5023660920 @default.
- W4294904477 creator A5044678207 @default.
- W4294904477 creator A5046340690 @default.
- W4294904477 creator A5068430583 @default.
- W4294904477 creator A5091752652 @default.
- W4294904477 date "2022-11-01" @default.
- W4294904477 modified "2023-10-14" @default.
- W4294904477 title "Exploration of deep learning models for real-time monitoring of state and performance of anaerobic digestion with online sensors" @default.
- W4294904477 cites W2043188685 @default.
- W4294904477 cites W2143702870 @default.
- W4294904477 cites W2144749488 @default.
- W4294904477 cites W2292721829 @default.
- W4294904477 cites W2395579298 @default.
- W4294904477 cites W2513649372 @default.
- W4294904477 cites W2615156618 @default.
- W4294904477 cites W2770608250 @default.
- W4294904477 cites W2790345246 @default.
- W4294904477 cites W2791898630 @default.
- W4294904477 cites W2803255133 @default.
- W4294904477 cites W2812669263 @default.
- W4294904477 cites W2892014430 @default.
- W4294904477 cites W2924962937 @default.
- W4294904477 cites W2945697621 @default.
- W4294904477 cites W2956569383 @default.
- W4294904477 cites W2973021568 @default.
- W4294904477 cites W2977689220 @default.
- W4294904477 cites W2991816849 @default.
- W4294904477 cites W2997788017 @default.
- W4294904477 cites W3005619874 @default.
- W4294904477 cites W3046864300 @default.
- W4294904477 cites W3094683717 @default.
- W4294904477 cites W3111665047 @default.
- W4294904477 cites W3117564001 @default.
- W4294904477 cites W3123951050 @default.
- W4294904477 cites W3133618741 @default.
- W4294904477 cites W3134537514 @default.
- W4294904477 cites W3163740992 @default.
- W4294904477 cites W3169147207 @default.
- W4294904477 cites W3173862472 @default.
- W4294904477 cites W3185895012 @default.
- W4294904477 cites W3189375195 @default.
- W4294904477 cites W3194711298 @default.
- W4294904477 cites W3195182824 @default.
- W4294904477 cites W4206643270 @default.
- W4294904477 cites W4212935168 @default.
- W4294904477 cites W4213064536 @default.
- W4294904477 cites W4220770305 @default.
- W4294904477 cites W4220954082 @default.
- W4294904477 cites W4221104716 @default.
- W4294904477 doi "https://doi.org/10.1016/j.biortech.2022.127908" @default.
- W4294904477 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36087652" @default.
- W4294904477 hasPublicationYear "2022" @default.
- W4294904477 type Work @default.
- W4294904477 citedByCount "7" @default.
- W4294904477 countsByYear W42949044772023 @default.
- W4294904477 crossrefType "journal-article" @default.
- W4294904477 hasAuthorship W4294904477A5020214425 @default.
- W4294904477 hasAuthorship W4294904477A5023660920 @default.
- W4294904477 hasAuthorship W4294904477A5044678207 @default.
- W4294904477 hasAuthorship W4294904477A5046340690 @default.
- W4294904477 hasAuthorship W4294904477A5068430583 @default.
- W4294904477 hasAuthorship W4294904477A5091752652 @default.
- W4294904477 hasConcept C105795698 @default.
- W4294904477 hasConcept C108583219 @default.
- W4294904477 hasConcept C111335779 @default.
- W4294904477 hasConcept C11413529 @default.
- W4294904477 hasConcept C119857082 @default.
- W4294904477 hasConcept C139945424 @default.
- W4294904477 hasConcept C153180895 @default.
- W4294904477 hasConcept C154945302 @default.
- W4294904477 hasConcept C178790620 @default.
- W4294904477 hasConcept C185592680 @default.
- W4294904477 hasConcept C2524010 @default.
- W4294904477 hasConcept C33923547 @default.
- W4294904477 hasConcept C41008148 @default.
- W4294904477 hasConcept C42407357 @default.
- W4294904477 hasConcept C48103436 @default.
- W4294904477 hasConcept C499616599 @default.
- W4294904477 hasConcept C5140985 @default.
- W4294904477 hasConcept C516920438 @default.
- W4294904477 hasConcept C81363708 @default.
- W4294904477 hasConcept C86803240 @default.
- W4294904477 hasConceptScore W4294904477C105795698 @default.
- W4294904477 hasConceptScore W4294904477C108583219 @default.
- W4294904477 hasConceptScore W4294904477C111335779 @default.
- W4294904477 hasConceptScore W4294904477C11413529 @default.
- W4294904477 hasConceptScore W4294904477C119857082 @default.
- W4294904477 hasConceptScore W4294904477C139945424 @default.
- W4294904477 hasConceptScore W4294904477C153180895 @default.
- W4294904477 hasConceptScore W4294904477C154945302 @default.
- W4294904477 hasConceptScore W4294904477C178790620 @default.
- W4294904477 hasConceptScore W4294904477C185592680 @default.
- W4294904477 hasConceptScore W4294904477C2524010 @default.
- W4294904477 hasConceptScore W4294904477C33923547 @default.
- W4294904477 hasConceptScore W4294904477C41008148 @default.