Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294920334> ?p ?o ?g. }
- W4294920334 endingPage "3053" @default.
- W4294920334 startingPage "3037" @default.
- W4294920334 abstract "Abstract Due to the staggering complexity of the brain and its neural circuitry, neuroscientists rely on the analysis of mathematical models to elucidate its function. From Hodgkin and Huxley's detailed description of the action potential in 1952 to today, new theories and increasing computational power have opened up novel avenues to study how neural circuits implement the computations that underlie behaviour. Computational neuroscientists have developed many models of neural circuits that differ in complexity, biological realism or emergent network properties. With recent advances in experimental techniques for detailed anatomical reconstructions or large‐scale activity recordings, rich biological data have become more available. The challenge when building network models is to reflect experimental results, either through a high level of detail or by finding an appropriate level of abstraction. Meanwhile, machine learning has facilitated the development of artificial neural networks, which are trained to perform specific tasks. While they have proven successful at achieving task‐oriented behaviour, they are often abstract constructs that differ in many features from the physiology of brain circuits. Thus, it is unclear whether the mechanisms underlying computation in biological circuits can be investigated by analysing artificial networks that accomplish the same function but differ in their mechanisms. Here, we argue that building biologically realistic network models is crucial to establishing causal relationships between neurons, synapses, circuits and behaviour. More specifically, we advocate for network models that consider the connectivity structure and the recorded activity dynamics while evaluating task performance. image" @default.
- W4294920334 created "2022-09-08" @default.
- W4294920334 creator A5016976066 @default.
- W4294920334 creator A5024491340 @default.
- W4294920334 creator A5030975818 @default.
- W4294920334 creator A5037266643 @default.
- W4294920334 creator A5042732350 @default.
- W4294920334 creator A5055262448 @default.
- W4294920334 date "2022-09-25" @default.
- W4294920334 modified "2023-09-26" @default.
- W4294920334 title "How to incorporate biological insights into network models and why it matters" @default.
- W4294920334 cites W1489333352 @default.
- W4294920334 cites W1490454746 @default.
- W4294920334 cites W1498436455 @default.
- W4294920334 cites W1501360999 @default.
- W4294920334 cites W1504248943 @default.
- W4294920334 cites W1582051163 @default.
- W4294920334 cites W1733248925 @default.
- W4294920334 cites W1921182138 @default.
- W4294920334 cites W1961056875 @default.
- W4294920334 cites W1971017968 @default.
- W4294920334 cites W1972682560 @default.
- W4294920334 cites W1973654985 @default.
- W4294920334 cites W1977906889 @default.
- W4294920334 cites W197865394 @default.
- W4294920334 cites W1985940938 @default.
- W4294920334 cites W1992828185 @default.
- W4294920334 cites W1995341919 @default.
- W4294920334 cites W1997228791 @default.
- W4294920334 cites W2003972083 @default.
- W4294920334 cites W2005475622 @default.
- W4294920334 cites W2009375605 @default.
- W4294920334 cites W2016354087 @default.
- W4294920334 cites W2020539709 @default.
- W4294920334 cites W2020819324 @default.
- W4294920334 cites W2022235653 @default.
- W4294920334 cites W2028546686 @default.
- W4294920334 cites W2029342452 @default.
- W4294920334 cites W2030612334 @default.
- W4294920334 cites W2031543773 @default.
- W4294920334 cites W2036958054 @default.
- W4294920334 cites W2040092971 @default.
- W4294920334 cites W2042421964 @default.
- W4294920334 cites W2047125104 @default.
- W4294920334 cites W2048756013 @default.
- W4294920334 cites W2058616551 @default.
- W4294920334 cites W2061681507 @default.
- W4294920334 cites W2061897041 @default.
- W4294920334 cites W2065286706 @default.
- W4294920334 cites W2073895917 @default.
- W4294920334 cites W2076964542 @default.
- W4294920334 cites W2083883424 @default.
- W4294920334 cites W2084259975 @default.
- W4294920334 cites W2089442458 @default.
- W4294920334 cites W2097099483 @default.
- W4294920334 cites W2098580305 @default.
- W4294920334 cites W2101954189 @default.
- W4294920334 cites W2102701721 @default.
- W4294920334 cites W2104548381 @default.
- W4294920334 cites W2105430025 @default.
- W4294920334 cites W2106566258 @default.
- W4294920334 cites W2109596721 @default.
- W4294920334 cites W2113345172 @default.
- W4294920334 cites W2117539524 @default.
- W4294920334 cites W2121008432 @default.
- W4294920334 cites W2121289914 @default.
- W4294920334 cites W2123820663 @default.
- W4294920334 cites W2126189364 @default.
- W4294920334 cites W2128084896 @default.
- W4294920334 cites W2141166794 @default.
- W4294920334 cites W2141763580 @default.
- W4294920334 cites W2142909588 @default.
- W4294920334 cites W2147101007 @default.
- W4294920334 cites W2147617498 @default.
- W4294920334 cites W2148654448 @default.
- W4294920334 cites W2151718948 @default.
- W4294920334 cites W2153201079 @default.
- W4294920334 cites W2153564253 @default.
- W4294920334 cites W2153797761 @default.
- W4294920334 cites W2158424806 @default.
- W4294920334 cites W2160239507 @default.
- W4294920334 cites W2161432648 @default.
- W4294920334 cites W2164653071 @default.
- W4294920334 cites W2168144640 @default.
- W4294920334 cites W2168462263 @default.
- W4294920334 cites W2170697082 @default.
- W4294920334 cites W2179178098 @default.
- W4294920334 cites W2187011629 @default.
- W4294920334 cites W2220010338 @default.
- W4294920334 cites W2230946642 @default.
- W4294920334 cites W2295845209 @default.
- W4294920334 cites W2307899896 @default.
- W4294920334 cites W2335468953 @default.
- W4294920334 cites W2415438529 @default.
- W4294920334 cites W2467132869 @default.
- W4294920334 cites W2469581795 @default.
- W4294920334 cites W2516160193 @default.
- W4294920334 cites W2536957931 @default.