Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294921306> ?p ?o ?g. }
- W4294921306 abstract "With the development of digital pathology and the renewal of deep learning algorithm, artificial intelligence (AI) is widely applied in tumor pathology. Previous researches have demonstrated that AI-based tumor pathology may help to solve the challenges faced by traditional pathology. This technology has attracted the attention of scholars in many fields and a large amount of articles have been published. This study mainly summarizes the knowledge structure of AI-based tumor pathology through bibliometric analysis, and discusses the potential research trends and foci.Publications related to AI-based tumor pathology from 1999 to 2021 were selected from Web of Science Core Collection. VOSviewer and Citespace were mainly used to perform and visualize co-authorship, co-citation, and co-occurrence analysis of countries, institutions, authors, references and keywords in this field.A total of 2753 papers were included. The papers on AI-based tumor pathology research had been continuously increased since 1999. The United States made the largest contribution in this field, in terms of publications (1138, 41.34%), H-index (85) and total citations (35,539 times). We identified the most productive institution and author were Harvard Medical School and Madabhushi Anant, while Jemal Ahmedin was the most co-cited author. Scientific Reports was the most prominent journal and after analysis, Lecture Notes in Computer Science was the journal with highest total link strength. According to the result of references and keywords analysis, breast cancer histopathology convolutional neural network and histopathological image were identified as the major future research foci.AI-based tumor pathology is in the stage of vigorous development and has a bright prospect. International transboundary cooperation among countries and institutions should be strengthened in the future. It is foreseeable that more research foci will be lied in the interpretability of deep learning-based model and the development of multi-modal fusion model." @default.
- W4294921306 created "2022-09-08" @default.
- W4294921306 creator A5003149068 @default.
- W4294921306 creator A5003905939 @default.
- W4294921306 creator A5012906398 @default.
- W4294921306 creator A5023183867 @default.
- W4294921306 creator A5059050905 @default.
- W4294921306 creator A5061313493 @default.
- W4294921306 creator A5071369173 @default.
- W4294921306 creator A5073905480 @default.
- W4294921306 creator A5084013222 @default.
- W4294921306 date "2022-09-06" @default.
- W4294921306 modified "2023-10-14" @default.
- W4294921306 title "Global research trends and foci of artificial intelligence-based tumor pathology: a scientometric study" @default.
- W4294921306 cites W1503080862 @default.
- W4294921306 cites W1548827537 @default.
- W4294921306 cites W1901129140 @default.
- W4294921306 cites W1977918192 @default.
- W4294921306 cites W1983895811 @default.
- W4294921306 cites W1987370132 @default.
- W4294921306 cites W2004445999 @default.
- W4294921306 cites W2026340596 @default.
- W4294921306 cites W2054450921 @default.
- W4294921306 cites W2064072638 @default.
- W4294921306 cites W2075961646 @default.
- W4294921306 cites W2128438887 @default.
- W4294921306 cites W2132631086 @default.
- W4294921306 cites W2140557408 @default.
- W4294921306 cites W2148309496 @default.
- W4294921306 cites W2150220236 @default.
- W4294921306 cites W2160441315 @default.
- W4294921306 cites W2169789386 @default.
- W4294921306 cites W2194775991 @default.
- W4294921306 cites W2248620004 @default.
- W4294921306 cites W2470965540 @default.
- W4294921306 cites W2570618306 @default.
- W4294921306 cites W2576404523 @default.
- W4294921306 cites W2592929672 @default.
- W4294921306 cites W2726542547 @default.
- W4294921306 cites W2760946358 @default.
- W4294921306 cites W2762672048 @default.
- W4294921306 cites W2763457723 @default.
- W4294921306 cites W2772723798 @default.
- W4294921306 cites W2790967965 @default.
- W4294921306 cites W2793944726 @default.
- W4294921306 cites W2808210572 @default.
- W4294921306 cites W2889646458 @default.
- W4294921306 cites W2892633782 @default.
- W4294921306 cites W2895763047 @default.
- W4294921306 cites W2911188335 @default.
- W4294921306 cites W2911324147 @default.
- W4294921306 cites W2911964244 @default.
- W4294921306 cites W2943370629 @default.
- W4294921306 cites W2945677268 @default.
- W4294921306 cites W2945976633 @default.
- W4294921306 cites W2951934944 @default.
- W4294921306 cites W2964930572 @default.
- W4294921306 cites W2967444033 @default.
- W4294921306 cites W2996583486 @default.
- W4294921306 cites W3000396219 @default.
- W4294921306 cites W3002137088 @default.
- W4294921306 cites W3005290042 @default.
- W4294921306 cites W3024461476 @default.
- W4294921306 cites W3043636152 @default.
- W4294921306 cites W3084161163 @default.
- W4294921306 cites W3098164696 @default.
- W4294921306 cites W3099458507 @default.
- W4294921306 cites W3128410443 @default.
- W4294921306 cites W3128646645 @default.
- W4294921306 cites W3142498373 @default.
- W4294921306 cites W3159170457 @default.
- W4294921306 cites W3180412704 @default.
- W4294921306 cites W3188218913 @default.
- W4294921306 cites W3194094059 @default.
- W4294921306 cites W3204013916 @default.
- W4294921306 cites W3217221256 @default.
- W4294921306 cites W3217354127 @default.
- W4294921306 cites W4206042814 @default.
- W4294921306 cites W4207082501 @default.
- W4294921306 cites W4214571778 @default.
- W4294921306 cites W4225541120 @default.
- W4294921306 doi "https://doi.org/10.1186/s12967-022-03615-0" @default.
- W4294921306 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36068536" @default.
- W4294921306 hasPublicationYear "2022" @default.
- W4294921306 type Work @default.
- W4294921306 citedByCount "13" @default.
- W4294921306 countsByYear W42949213062022 @default.
- W4294921306 countsByYear W42949213062023 @default.
- W4294921306 crossrefType "journal-article" @default.
- W4294921306 hasAuthorship W4294921306A5003149068 @default.
- W4294921306 hasAuthorship W4294921306A5003905939 @default.
- W4294921306 hasAuthorship W4294921306A5012906398 @default.
- W4294921306 hasAuthorship W4294921306A5023183867 @default.
- W4294921306 hasAuthorship W4294921306A5059050905 @default.
- W4294921306 hasAuthorship W4294921306A5061313493 @default.
- W4294921306 hasAuthorship W4294921306A5071369173 @default.
- W4294921306 hasAuthorship W4294921306A5073905480 @default.
- W4294921306 hasAuthorship W4294921306A5084013222 @default.
- W4294921306 hasBestOaLocation W42949213061 @default.
- W4294921306 hasConcept C105345328 @default.