Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294954884> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4294954884 endingPage "2834" @default.
- W4294954884 startingPage "2834" @default.
- W4294954884 abstract "With the popularization of unmanned aerial vehicle (UAV) applications and the continuous development of the power grid network, identifying power line scenarios in advance is very important for the safety of low-altitude flight. The power line scene recognition (PLSR) under complex background environments is particularly important. The complex background environment of power lines is usually mixed by forests, rivers, mountains, buildings, and so on. In these environments, the detection of slender power lines is particularly difficult. In this paper, a PLSR method of complex backgrounds based on the convolutional capsule network with image enhancement is proposed. The enhancement edge features of power line scenes based on the guided filter are fused with the convolutional capsule network framework. First, the guided filter is used to enhance the power line features in order to improve the recognition of the power line in the complex background. Second, the convolutional capsule network is used to extract the depth hierarchical features of the scene image of power lines. Finally, the output layer of the convolutional capsule network identifies the power line and non-power line scenes, and through the decoding layer, the power lines are reconstructed in the power line scene. Experimental results show that the accuracy of the proposed method obtains 97.43% on the public dataset. Robustness and generalization test results show that it has a good application prospect. Furthermore, the power lines can be accurately extracted from the complex backgrounds based on the reconstructed module." @default.
- W4294954884 created "2022-09-08" @default.
- W4294954884 creator A5007128189 @default.
- W4294954884 creator A5024312795 @default.
- W4294954884 creator A5040325868 @default.
- W4294954884 date "2022-09-08" @default.
- W4294954884 modified "2023-10-05" @default.
- W4294954884 title "Power Line Scene Recognition Based on Convolutional Capsule Network with Image Enhancement" @default.
- W4294954884 cites W1995865273 @default.
- W4294954884 cites W2125188192 @default.
- W4294954884 cites W2766435951 @default.
- W4294954884 cites W2770625192 @default.
- W4294954884 cites W2820739641 @default.
- W4294954884 cites W2885141472 @default.
- W4294954884 cites W2890380083 @default.
- W4294954884 cites W2903088819 @default.
- W4294954884 cites W2963881378 @default.
- W4294954884 cites W3004482148 @default.
- W4294954884 cites W3017063488 @default.
- W4294954884 cites W3019847943 @default.
- W4294954884 cites W3041148517 @default.
- W4294954884 cites W3081006173 @default.
- W4294954884 cites W3082127514 @default.
- W4294954884 cites W3093815437 @default.
- W4294954884 cites W3095360123 @default.
- W4294954884 cites W3128991988 @default.
- W4294954884 cites W3133704440 @default.
- W4294954884 cites W3135328933 @default.
- W4294954884 cites W3155131704 @default.
- W4294954884 cites W3177359091 @default.
- W4294954884 cites W3183638940 @default.
- W4294954884 cites W3191609922 @default.
- W4294954884 cites W3212015992 @default.
- W4294954884 cites W3213678982 @default.
- W4294954884 cites W4205615939 @default.
- W4294954884 cites W4212858574 @default.
- W4294954884 cites W4225997907 @default.
- W4294954884 doi "https://doi.org/10.3390/electronics11182834" @default.
- W4294954884 hasPublicationYear "2022" @default.
- W4294954884 type Work @default.
- W4294954884 citedByCount "0" @default.
- W4294954884 crossrefType "journal-article" @default.
- W4294954884 hasAuthorship W4294954884A5007128189 @default.
- W4294954884 hasAuthorship W4294954884A5024312795 @default.
- W4294954884 hasAuthorship W4294954884A5040325868 @default.
- W4294954884 hasBestOaLocation W42949548841 @default.
- W4294954884 hasConcept C104317684 @default.
- W4294954884 hasConcept C121332964 @default.
- W4294954884 hasConcept C153180895 @default.
- W4294954884 hasConcept C154945302 @default.
- W4294954884 hasConcept C163258240 @default.
- W4294954884 hasConcept C185592680 @default.
- W4294954884 hasConcept C198352243 @default.
- W4294954884 hasConcept C2524010 @default.
- W4294954884 hasConcept C31972630 @default.
- W4294954884 hasConcept C33923547 @default.
- W4294954884 hasConcept C41008148 @default.
- W4294954884 hasConcept C55493867 @default.
- W4294954884 hasConcept C62520636 @default.
- W4294954884 hasConcept C63479239 @default.
- W4294954884 hasConcept C81363708 @default.
- W4294954884 hasConceptScore W4294954884C104317684 @default.
- W4294954884 hasConceptScore W4294954884C121332964 @default.
- W4294954884 hasConceptScore W4294954884C153180895 @default.
- W4294954884 hasConceptScore W4294954884C154945302 @default.
- W4294954884 hasConceptScore W4294954884C163258240 @default.
- W4294954884 hasConceptScore W4294954884C185592680 @default.
- W4294954884 hasConceptScore W4294954884C198352243 @default.
- W4294954884 hasConceptScore W4294954884C2524010 @default.
- W4294954884 hasConceptScore W4294954884C31972630 @default.
- W4294954884 hasConceptScore W4294954884C33923547 @default.
- W4294954884 hasConceptScore W4294954884C41008148 @default.
- W4294954884 hasConceptScore W4294954884C55493867 @default.
- W4294954884 hasConceptScore W4294954884C62520636 @default.
- W4294954884 hasConceptScore W4294954884C63479239 @default.
- W4294954884 hasConceptScore W4294954884C81363708 @default.
- W4294954884 hasFunder F4320321001 @default.
- W4294954884 hasIssue "18" @default.
- W4294954884 hasLocation W42949548841 @default.
- W4294954884 hasOpenAccess W4294954884 @default.
- W4294954884 hasPrimaryLocation W42949548841 @default.
- W4294954884 hasRelatedWork W1891287906 @default.
- W4294954884 hasRelatedWork W2035976912 @default.
- W4294954884 hasRelatedWork W2541791370 @default.
- W4294954884 hasRelatedWork W2767651786 @default.
- W4294954884 hasRelatedWork W2912288872 @default.
- W4294954884 hasRelatedWork W2921707373 @default.
- W4294954884 hasRelatedWork W3094187672 @default.
- W4294954884 hasRelatedWork W4385415357 @default.
- W4294954884 hasRelatedWork W4386597354 @default.
- W4294954884 hasRelatedWork W564581980 @default.
- W4294954884 hasVolume "11" @default.
- W4294954884 isParatext "false" @default.
- W4294954884 isRetracted "false" @default.
- W4294954884 workType "article" @default.