Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294955700> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4294955700 endingPage "215" @default.
- W4294955700 startingPage "189" @default.
- W4294955700 abstract "The methods used to predict, categorize, and recognize complex data like pictures, audio, and texts have been popular in machine learning. These methods are the basis for future AI-driven internet providers because of unparalleled precision in deep learning methodologies. Commercial firms gather large-scale user data and perform machine learning technique. The massive information necessary for machine learning raises privacy problems. The user's personal and extremely sensitive data such as photographs and voice records are gathered and retained forever by these commercial firms and users can not limit the intents of these sensitive information. In addition, centrally stored data is susceptible to legal and extrajudicial monitoring. Many data owners use profound extensive learning by security and confidentiality. This chapter contains a practical approach that allows several parties to learn a precise model of complex systems for a specific purpose without disclosing their data sets. It provides an interesting element in utility and privacy." @default.
- W4294955700 created "2022-09-08" @default.
- W4294955700 creator A5055472675 @default.
- W4294955700 creator A5064325025 @default.
- W4294955700 date "2022-06-24" @default.
- W4294955700 modified "2023-10-14" @default.
- W4294955700 title "Privacy Preservation of Image Data With Machine Learning" @default.
- W4294955700 cites W1990503647 @default.
- W4294955700 cites W1991084032 @default.
- W4294955700 cites W2036481427 @default.
- W4294955700 cites W2038782607 @default.
- W4294955700 cites W2053637704 @default.
- W4294955700 cites W2082273595 @default.
- W4294955700 cites W2083588504 @default.
- W4294955700 cites W2468013489 @default.
- W4294955700 cites W2520442116 @default.
- W4294955700 cites W2558615693 @default.
- W4294955700 cites W2592906302 @default.
- W4294955700 cites W2606937201 @default.
- W4294955700 cites W2751761995 @default.
- W4294955700 cites W2922083654 @default.
- W4294955700 cites W2941825072 @default.
- W4294955700 cites W3004744731 @default.
- W4294955700 cites W3076699618 @default.
- W4294955700 cites W3081380244 @default.
- W4294955700 cites W3082401962 @default.
- W4294955700 cites W3113034841 @default.
- W4294955700 cites W3124016887 @default.
- W4294955700 cites W4205849423 @default.
- W4294955700 doi "https://doi.org/10.4018/978-1-7998-9430-8.ch010" @default.
- W4294955700 hasPublicationYear "2022" @default.
- W4294955700 type Work @default.
- W4294955700 citedByCount "0" @default.
- W4294955700 crossrefType "book-chapter" @default.
- W4294955700 hasAuthorship W4294955700A5055472675 @default.
- W4294955700 hasAuthorship W4294955700A5064325025 @default.
- W4294955700 hasConcept C108827166 @default.
- W4294955700 hasConcept C110875604 @default.
- W4294955700 hasConcept C119857082 @default.
- W4294955700 hasConcept C136764020 @default.
- W4294955700 hasConcept C137822555 @default.
- W4294955700 hasConcept C154945302 @default.
- W4294955700 hasConcept C169093310 @default.
- W4294955700 hasConcept C2522767166 @default.
- W4294955700 hasConcept C38652104 @default.
- W4294955700 hasConcept C41008148 @default.
- W4294955700 hasConcept C71745522 @default.
- W4294955700 hasConcept C94124525 @default.
- W4294955700 hasConceptScore W4294955700C108827166 @default.
- W4294955700 hasConceptScore W4294955700C110875604 @default.
- W4294955700 hasConceptScore W4294955700C119857082 @default.
- W4294955700 hasConceptScore W4294955700C136764020 @default.
- W4294955700 hasConceptScore W4294955700C137822555 @default.
- W4294955700 hasConceptScore W4294955700C154945302 @default.
- W4294955700 hasConceptScore W4294955700C169093310 @default.
- W4294955700 hasConceptScore W4294955700C2522767166 @default.
- W4294955700 hasConceptScore W4294955700C38652104 @default.
- W4294955700 hasConceptScore W4294955700C41008148 @default.
- W4294955700 hasConceptScore W4294955700C71745522 @default.
- W4294955700 hasConceptScore W4294955700C94124525 @default.
- W4294955700 hasLocation W42949557001 @default.
- W4294955700 hasOpenAccess W4294955700 @default.
- W4294955700 hasPrimaryLocation W42949557001 @default.
- W4294955700 hasRelatedWork W100101447 @default.
- W4294955700 hasRelatedWork W1992276976 @default.
- W4294955700 hasRelatedWork W1995394136 @default.
- W4294955700 hasRelatedWork W2116324562 @default.
- W4294955700 hasRelatedWork W2143560501 @default.
- W4294955700 hasRelatedWork W2408073073 @default.
- W4294955700 hasRelatedWork W2416397921 @default.
- W4294955700 hasRelatedWork W3154546587 @default.
- W4294955700 hasRelatedWork W4226120128 @default.
- W4294955700 hasRelatedWork W2588870966 @default.
- W4294955700 isParatext "false" @default.
- W4294955700 isRetracted "false" @default.
- W4294955700 workType "book-chapter" @default.