Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294958105> ?p ?o ?g. }
- W4294958105 endingPage "1840" @default.
- W4294958105 startingPage "1840" @default.
- W4294958105 abstract "The purpose of attribute network representation learning is to learn the low-dimensional dense vector representation of nodes by combining structure and attribute information. The current network representation learning methods have insufficient interaction with structure when learning attribute information, and the structure and attribute information cannot be well integrated. In this paper, we propose an attribute network representation learning method for dual-channel autoencoder. One channel is for the network structure, and adopting the multi-hop attention mechanism is used to capture the node’s high-order neighborhood information and calculate the neighborhood weight; The other channel is for the node attribute information, and a low-pass Laplace filter is designed to iteratively obtain the attribute information in the neighborhood of the node. The dual-channel autoencoder ensures the learning of structure and attribute information respectively. The adaptive fusion module is constructed in this method to increase the acquisition of important information through the consistency and difference constraints of two kinds of information. The method trains encoders by supervising the joint reconstruction of loss functions of two autoencoders. Based on the node clustering task on four authentic open data sets, and compared with eight network representation learning algorithms in clustering accuracy, standardized mutual information and running time of some algorithms, the experimental results show that the proposed method is superior and reasonable." @default.
- W4294958105 created "2022-09-08" @default.
- W4294958105 creator A5007963347 @default.
- W4294958105 creator A5037583956 @default.
- W4294958105 creator A5073794419 @default.
- W4294958105 creator A5080300919 @default.
- W4294958105 date "2022-09-05" @default.
- W4294958105 modified "2023-09-26" @default.
- W4294958105 title "Attribute Network Representation Learning with Dual Autoencoders" @default.
- W4294958105 cites W2025172647 @default.
- W4294958105 cites W2177066871 @default.
- W4294958105 cites W2318901577 @default.
- W4294958105 cites W2350506101 @default.
- W4294958105 cites W2393319904 @default.
- W4294958105 cites W2559207722 @default.
- W4294958105 cites W2911932738 @default.
- W4294958105 cites W2950723285 @default.
- W4294958105 cites W2950880273 @default.
- W4294958105 cites W2962756421 @default.
- W4294958105 cites W2962975498 @default.
- W4294958105 cites W2963512530 @default.
- W4294958105 cites W2979750740 @default.
- W4294958105 cites W2997686727 @default.
- W4294958105 cites W3019494121 @default.
- W4294958105 cites W3026423472 @default.
- W4294958105 cites W3039055350 @default.
- W4294958105 cites W3046214831 @default.
- W4294958105 cites W3068003461 @default.
- W4294958105 cites W3091261294 @default.
- W4294958105 cites W3100993589 @default.
- W4294958105 cites W3104097132 @default.
- W4294958105 cites W3105705953 @default.
- W4294958105 cites W3108634112 @default.
- W4294958105 cites W3111826035 @default.
- W4294958105 cites W3115263587 @default.
- W4294958105 cites W3138679477 @default.
- W4294958105 cites W3184838450 @default.
- W4294958105 cites W3189882732 @default.
- W4294958105 cites W3207377746 @default.
- W4294958105 cites W3210485020 @default.
- W4294958105 cites W3210619801 @default.
- W4294958105 cites W3214620214 @default.
- W4294958105 cites W4200326158 @default.
- W4294958105 cites W4206117573 @default.
- W4294958105 cites W4206674880 @default.
- W4294958105 cites W4210257598 @default.
- W4294958105 cites W4221067673 @default.
- W4294958105 cites W4280526734 @default.
- W4294958105 cites W4285292919 @default.
- W4294958105 cites W4322614756 @default.
- W4294958105 doi "https://doi.org/10.3390/sym14091840" @default.
- W4294958105 hasPublicationYear "2022" @default.
- W4294958105 type Work @default.
- W4294958105 citedByCount "0" @default.
- W4294958105 crossrefType "journal-article" @default.
- W4294958105 hasAuthorship W4294958105A5007963347 @default.
- W4294958105 hasAuthorship W4294958105A5037583956 @default.
- W4294958105 hasAuthorship W4294958105A5073794419 @default.
- W4294958105 hasAuthorship W4294958105A5080300919 @default.
- W4294958105 hasBestOaLocation W42949581051 @default.
- W4294958105 hasConcept C101738243 @default.
- W4294958105 hasConcept C119857082 @default.
- W4294958105 hasConcept C124101348 @default.
- W4294958105 hasConcept C127413603 @default.
- W4294958105 hasConcept C153180895 @default.
- W4294958105 hasConcept C154945302 @default.
- W4294958105 hasConcept C17744445 @default.
- W4294958105 hasConcept C199539241 @default.
- W4294958105 hasConcept C2776359362 @default.
- W4294958105 hasConcept C41008148 @default.
- W4294958105 hasConcept C50644808 @default.
- W4294958105 hasConcept C59404180 @default.
- W4294958105 hasConcept C62611344 @default.
- W4294958105 hasConcept C66938386 @default.
- W4294958105 hasConcept C73555534 @default.
- W4294958105 hasConcept C94625758 @default.
- W4294958105 hasConceptScore W4294958105C101738243 @default.
- W4294958105 hasConceptScore W4294958105C119857082 @default.
- W4294958105 hasConceptScore W4294958105C124101348 @default.
- W4294958105 hasConceptScore W4294958105C127413603 @default.
- W4294958105 hasConceptScore W4294958105C153180895 @default.
- W4294958105 hasConceptScore W4294958105C154945302 @default.
- W4294958105 hasConceptScore W4294958105C17744445 @default.
- W4294958105 hasConceptScore W4294958105C199539241 @default.
- W4294958105 hasConceptScore W4294958105C2776359362 @default.
- W4294958105 hasConceptScore W4294958105C41008148 @default.
- W4294958105 hasConceptScore W4294958105C50644808 @default.
- W4294958105 hasConceptScore W4294958105C59404180 @default.
- W4294958105 hasConceptScore W4294958105C62611344 @default.
- W4294958105 hasConceptScore W4294958105C66938386 @default.
- W4294958105 hasConceptScore W4294958105C73555534 @default.
- W4294958105 hasConceptScore W4294958105C94625758 @default.
- W4294958105 hasIssue "9" @default.
- W4294958105 hasLocation W42949581051 @default.
- W4294958105 hasOpenAccess W4294958105 @default.
- W4294958105 hasPrimaryLocation W42949581051 @default.
- W4294958105 hasRelatedWork W2292254049 @default.
- W4294958105 hasRelatedWork W2592385986 @default.