Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294959624> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4294959624 endingPage "6416" @default.
- W4294959624 startingPage "6416" @default.
- W4294959624 abstract "The forecasting of crude oil production is essential to economic plans and decision-making in the oil and gas industry. Several techniques have been applied to forecast crude oil production. Artificial Intelligence (AI)-based techniques are promising that have been applied successfully to several sectors and are capable of being applied to different stages of oil exploration and production. However, there is still more work to be done in the oil sector. This paper proposes an optimized gradient boosting (GB) model by genetic algorithm (GA) called GA-GB for forecasting crude oil production. The proposed optimized model was applied to forecast crude oil in several countries, including the top producers and others with less production. The GA-GB model of crude oil forecasting was successfully developed, trained, and tested to provide excellent forecasting of crude oil production. The proposed GA-GB model has been applied to forecast crude oil production and has also been applied to oil price and oil demand, and the experiment of the proposed optimized model shows good results. In the experiment, three different actual datasets are used: crude oil production (OProd), crude oil price (OPrice), and oil demand (OD) acquired from various sources. The GA-GB model outperforms five regression models, including the Bagging regressor, KNN regressor, MLP regressor, RF regressor, and Lasso regressor." @default.
- W4294959624 created "2022-09-08" @default.
- W4294959624 creator A5071625361 @default.
- W4294959624 date "2022-09-02" @default.
- W4294959624 modified "2023-09-25" @default.
- W4294959624 title "An Optimized Gradient Boosting Model by Genetic Algorithm for Forecasting Crude Oil Production" @default.
- W4294959624 cites W1678356000 @default.
- W4294959624 cites W2001129580 @default.
- W4294959624 cites W2577195726 @default.
- W4294959624 cites W2769239409 @default.
- W4294959624 cites W2885505527 @default.
- W4294959624 cites W2900717565 @default.
- W4294959624 cites W2947587948 @default.
- W4294959624 cites W2981842332 @default.
- W4294959624 cites W2984376566 @default.
- W4294959624 cites W2990922644 @default.
- W4294959624 cites W2999849227 @default.
- W4294959624 cites W3003462583 @default.
- W4294959624 cites W3023016738 @default.
- W4294959624 cites W3080526359 @default.
- W4294959624 cites W3119506161 @default.
- W4294959624 cites W3136570575 @default.
- W4294959624 cites W3138660668 @default.
- W4294959624 cites W3157032548 @default.
- W4294959624 cites W3163452734 @default.
- W4294959624 cites W3178986468 @default.
- W4294959624 cites W3182706339 @default.
- W4294959624 cites W3184210697 @default.
- W4294959624 cites W3201991780 @default.
- W4294959624 cites W4200611051 @default.
- W4294959624 cites W4206076471 @default.
- W4294959624 cites W4210901171 @default.
- W4294959624 cites W4229454371 @default.
- W4294959624 cites W4283579117 @default.
- W4294959624 doi "https://doi.org/10.3390/en15176416" @default.
- W4294959624 hasPublicationYear "2022" @default.
- W4294959624 type Work @default.
- W4294959624 citedByCount "1" @default.
- W4294959624 countsByYear W42949596242023 @default.
- W4294959624 crossrefType "journal-article" @default.
- W4294959624 hasAuthorship W4294959624A5071625361 @default.
- W4294959624 hasBestOaLocation W42949596241 @default.
- W4294959624 hasConcept C119857082 @default.
- W4294959624 hasConcept C127413603 @default.
- W4294959624 hasConcept C139719470 @default.
- W4294959624 hasConcept C154945302 @default.
- W4294959624 hasConcept C162324750 @default.
- W4294959624 hasConcept C169258074 @default.
- W4294959624 hasConcept C2778348673 @default.
- W4294959624 hasConcept C2984309096 @default.
- W4294959624 hasConcept C2987168347 @default.
- W4294959624 hasConcept C41008148 @default.
- W4294959624 hasConcept C46686674 @default.
- W4294959624 hasConcept C70153297 @default.
- W4294959624 hasConcept C78762247 @default.
- W4294959624 hasConcept C8880873 @default.
- W4294959624 hasConceptScore W4294959624C119857082 @default.
- W4294959624 hasConceptScore W4294959624C127413603 @default.
- W4294959624 hasConceptScore W4294959624C139719470 @default.
- W4294959624 hasConceptScore W4294959624C154945302 @default.
- W4294959624 hasConceptScore W4294959624C162324750 @default.
- W4294959624 hasConceptScore W4294959624C169258074 @default.
- W4294959624 hasConceptScore W4294959624C2778348673 @default.
- W4294959624 hasConceptScore W4294959624C2984309096 @default.
- W4294959624 hasConceptScore W4294959624C2987168347 @default.
- W4294959624 hasConceptScore W4294959624C41008148 @default.
- W4294959624 hasConceptScore W4294959624C46686674 @default.
- W4294959624 hasConceptScore W4294959624C70153297 @default.
- W4294959624 hasConceptScore W4294959624C78762247 @default.
- W4294959624 hasConceptScore W4294959624C8880873 @default.
- W4294959624 hasFunder F4320323722 @default.
- W4294959624 hasIssue "17" @default.
- W4294959624 hasLocation W42949596241 @default.
- W4294959624 hasOpenAccess W4294959624 @default.
- W4294959624 hasPrimaryLocation W42949596241 @default.
- W4294959624 hasRelatedWork W2358315228 @default.
- W4294959624 hasRelatedWork W2766514146 @default.
- W4294959624 hasRelatedWork W2885778889 @default.
- W4294959624 hasRelatedWork W2949576276 @default.
- W4294959624 hasRelatedWork W2967733078 @default.
- W4294959624 hasRelatedWork W3137904399 @default.
- W4294959624 hasRelatedWork W4294959624 @default.
- W4294959624 hasRelatedWork W4310224730 @default.
- W4294959624 hasRelatedWork W4310492845 @default.
- W4294959624 hasRelatedWork W4313488044 @default.
- W4294959624 hasVolume "15" @default.
- W4294959624 isParatext "false" @default.
- W4294959624 isRetracted "false" @default.
- W4294959624 workType "article" @default.