Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294969080> ?p ?o ?g. }
- W4294969080 endingPage "329" @default.
- W4294969080 startingPage "317" @default.
- W4294969080 abstract "Intensive care unit (ICU) patients demand continuous monitoring of several clinical and laboratory parameters that directly influence their medical progress and the staff's decision-making. Those data are vital in the assistance of these patients, being already used by several scoring systems. In this context, machine learning approaches have been used for medical predictions based on clinical data, which includes patient outcomes.To develop a binary classifier for the outcome of death in ICU patients based on clinical and laboratory parameters, a set formed by 1087 instances and 50 variables from ICU patients admitted to the emergency department was obtained in the WiDS (Women in Data Science) Datathon 2020: ICU Mortality Prediction dataset.For categorical variables, frequencies and risk ratios were calculated. Numerical variables were computed as means and standard deviations and Mann-Whitney U tests were performed. We then divided the data into a training (80%) and test (20%) set. The training set was used to train a predictive model based on the Random Forest algorithm and the test set was used to evaluate the predictive effectiveness of the model.A statistically significant association was identified between need for intubation, as well predominant systemic cardiovascular involvement, and hospital death. A number of the numerical variables analyzed (for instance Glasgow Coma Score punctuations, mean arterial pressure, temperature, pH, and lactate, creatinine, albumin and bilirubin values) were also significantly associated with death outcome. The proposed binary Random Forest classifier obtained on the test set (n = 218) had an accuracy of 80.28%, sensitivity of 81.82%, specificity of 79.43%, positive predictive value of 73.26%, negative predictive value of 84.85%, F1 score of 0.74, and area under the curve score of 0.85. The predictive variables of the greatest importance were the maximum and minimum lactate values, adding up to a predictive importance of 15.54%.We demonstrated the efficacy of a Random Forest machine learning algorithm for handling clinical and laboratory data from patients under intensive monitoring. Therefore, we endorse the emerging notion that machine learning has great potential to provide us support to critically question existing methodologies, allowing improvements that reduce mortality." @default.
- W4294969080 created "2022-09-08" @default.
- W4294969080 creator A5008101539 @default.
- W4294969080 creator A5015877975 @default.
- W4294969080 creator A5038507372 @default.
- W4294969080 creator A5044957135 @default.
- W4294969080 creator A5068037540 @default.
- W4294969080 creator A5075054907 @default.
- W4294969080 date "2022-09-09" @default.
- W4294969080 modified "2023-09-30" @default.
- W4294969080 title "Prediction of hospital mortality in intensive care unit patients from clinical and laboratory data: A machine learning approach" @default.
- W4294969080 cites W1562986705 @default.
- W4294969080 cites W1995173362 @default.
- W4294969080 cites W2035457920 @default.
- W4294969080 cites W2056671638 @default.
- W4294969080 cites W2080935305 @default.
- W4294969080 cites W2098301775 @default.
- W4294969080 cites W2110748670 @default.
- W4294969080 cites W2115827734 @default.
- W4294969080 cites W2177870565 @default.
- W4294969080 cites W2516982490 @default.
- W4294969080 cites W2734820644 @default.
- W4294969080 cites W2757722543 @default.
- W4294969080 cites W2776803885 @default.
- W4294969080 cites W2809015544 @default.
- W4294969080 cites W2900738654 @default.
- W4294969080 cites W2911964244 @default.
- W4294969080 cites W2923418412 @default.
- W4294969080 cites W2964407252 @default.
- W4294969080 cites W2965956687 @default.
- W4294969080 cites W2973052277 @default.
- W4294969080 cites W3011812967 @default.
- W4294969080 cites W3031876060 @default.
- W4294969080 cites W3046651424 @default.
- W4294969080 cites W3070886816 @default.
- W4294969080 cites W3091829098 @default.
- W4294969080 cites W3111698685 @default.
- W4294969080 cites W3162199380 @default.
- W4294969080 cites W3173528350 @default.
- W4294969080 cites W3176273571 @default.
- W4294969080 cites W3185055706 @default.
- W4294969080 doi "https://doi.org/10.5492/wjccm.v11.i5.317" @default.
- W4294969080 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36160934" @default.
- W4294969080 hasPublicationYear "2022" @default.
- W4294969080 type Work @default.
- W4294969080 citedByCount "1" @default.
- W4294969080 countsByYear W42949690802023 @default.
- W4294969080 crossrefType "journal-article" @default.
- W4294969080 hasAuthorship W4294969080A5008101539 @default.
- W4294969080 hasAuthorship W4294969080A5015877975 @default.
- W4294969080 hasAuthorship W4294969080A5038507372 @default.
- W4294969080 hasAuthorship W4294969080A5044957135 @default.
- W4294969080 hasAuthorship W4294969080A5068037540 @default.
- W4294969080 hasAuthorship W4294969080A5075054907 @default.
- W4294969080 hasBestOaLocation W42949690801 @default.
- W4294969080 hasConcept C119857082 @default.
- W4294969080 hasConcept C126322002 @default.
- W4294969080 hasConcept C141071460 @default.
- W4294969080 hasConcept C151730666 @default.
- W4294969080 hasConcept C154945302 @default.
- W4294969080 hasConcept C162324750 @default.
- W4294969080 hasConcept C169258074 @default.
- W4294969080 hasConcept C169903167 @default.
- W4294969080 hasConcept C17624336 @default.
- W4294969080 hasConcept C177713679 @default.
- W4294969080 hasConcept C194828623 @default.
- W4294969080 hasConcept C2776376669 @default.
- W4294969080 hasConcept C2778872837 @default.
- W4294969080 hasConcept C2779343474 @default.
- W4294969080 hasConcept C2987404301 @default.
- W4294969080 hasConcept C41008148 @default.
- W4294969080 hasConcept C50522688 @default.
- W4294969080 hasConcept C5274069 @default.
- W4294969080 hasConcept C58471807 @default.
- W4294969080 hasConcept C71924100 @default.
- W4294969080 hasConcept C86803240 @default.
- W4294969080 hasConceptScore W4294969080C119857082 @default.
- W4294969080 hasConceptScore W4294969080C126322002 @default.
- W4294969080 hasConceptScore W4294969080C141071460 @default.
- W4294969080 hasConceptScore W4294969080C151730666 @default.
- W4294969080 hasConceptScore W4294969080C154945302 @default.
- W4294969080 hasConceptScore W4294969080C162324750 @default.
- W4294969080 hasConceptScore W4294969080C169258074 @default.
- W4294969080 hasConceptScore W4294969080C169903167 @default.
- W4294969080 hasConceptScore W4294969080C17624336 @default.
- W4294969080 hasConceptScore W4294969080C177713679 @default.
- W4294969080 hasConceptScore W4294969080C194828623 @default.
- W4294969080 hasConceptScore W4294969080C2776376669 @default.
- W4294969080 hasConceptScore W4294969080C2778872837 @default.
- W4294969080 hasConceptScore W4294969080C2779343474 @default.
- W4294969080 hasConceptScore W4294969080C2987404301 @default.
- W4294969080 hasConceptScore W4294969080C41008148 @default.
- W4294969080 hasConceptScore W4294969080C50522688 @default.
- W4294969080 hasConceptScore W4294969080C5274069 @default.
- W4294969080 hasConceptScore W4294969080C58471807 @default.
- W4294969080 hasConceptScore W4294969080C71924100 @default.
- W4294969080 hasConceptScore W4294969080C86803240 @default.
- W4294969080 hasIssue "5" @default.