Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294975264> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4294975264 abstract "Natural control of assistive devices requires continuous positional encoding and decoding of the user's volition. Human movement is encoded by recruitment and rate coding of spinal motor units. Surface electromyography provides some information on the neural code of movement and is usually decoded into finger joint angles. However, the current approaches to mapping the electrical signal into joint angles are unsatisfactory. There are no methods that allow precise estimation of joint angles during natural hand movements within the large numbers of degrees of freedom of the hand. We propose a framework to train a neural network from digital cameras and high-density surface electromyography from the extrinsic (forearm and wrist) hand muscles. Furthermore, we show that our 3D convolutional neural network optimally predicted 14 functional flexion/extension joints of the hand. We found in our experiments (4 subjects; mean age of 26±2.12 years) that our model can predict individual sinusoidal finger movement at different speeds (0.5 and 1.5 Hz), as well as two and three finger pinching, and hand opening and closing, covering 14 degrees of freedom of the hand. Our deep learning method shows a mean absolute error of 2.78±0.28 degrees with a mean correlation coefficient between predicted and expected joint angles of 0.94, 95% confidence interval (CI) [0.81, 0.98] with simulated real-time inference times lower than 30 milliseconds. These results demonstrate that our approach is capable of predicting the user's volition similar to digital cameras through a non-invasive wearable neural interface. Clinical relevance- This method establishes a viable interface that can be used for both immersive virtual reality medical simulations environments and assistive devices such as exoskeleton and prosthetics." @default.
- W4294975264 created "2022-09-08" @default.
- W4294975264 creator A5008794352 @default.
- W4294975264 creator A5020411804 @default.
- W4294975264 creator A5024677840 @default.
- W4294975264 creator A5039554310 @default.
- W4294975264 creator A5064597134 @default.
- W4294975264 creator A5068772120 @default.
- W4294975264 date "2022-07-11" @default.
- W4294975264 modified "2023-09-26" @default.
- W4294975264 title "Accurate Continuous Prediction of 14 Degrees of Freedom of the Hand from Myoelectrical Signals through Convolutive Deep Learning" @default.
- W4294975264 cites W1964025242 @default.
- W4294975264 cites W2045902658 @default.
- W4294975264 cites W2290981976 @default.
- W4294975264 cites W2781714299 @default.
- W4294975264 cites W2887114371 @default.
- W4294975264 cites W3021157419 @default.
- W4294975264 cites W3104589838 @default.
- W4294975264 cites W3136958148 @default.
- W4294975264 cites W3154181057 @default.
- W4294975264 cites W3161581460 @default.
- W4294975264 cites W3164468069 @default.
- W4294975264 cites W3164499460 @default.
- W4294975264 cites W3182280888 @default.
- W4294975264 cites W3198095349 @default.
- W4294975264 cites W3204727593 @default.
- W4294975264 cites W3206939027 @default.
- W4294975264 cites W629053621 @default.
- W4294975264 doi "https://doi.org/10.1109/embc48229.2022.9870937" @default.
- W4294975264 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36086496" @default.
- W4294975264 hasPublicationYear "2022" @default.
- W4294975264 type Work @default.
- W4294975264 citedByCount "3" @default.
- W4294975264 countsByYear W42949752642022 @default.
- W4294975264 countsByYear W42949752642023 @default.
- W4294975264 crossrefType "proceedings-article" @default.
- W4294975264 hasAuthorship W4294975264A5008794352 @default.
- W4294975264 hasAuthorship W4294975264A5020411804 @default.
- W4294975264 hasAuthorship W4294975264A5024677840 @default.
- W4294975264 hasAuthorship W4294975264A5039554310 @default.
- W4294975264 hasAuthorship W4294975264A5064597134 @default.
- W4294975264 hasAuthorship W4294975264A5068772120 @default.
- W4294975264 hasConcept C121332964 @default.
- W4294975264 hasConcept C126838900 @default.
- W4294975264 hasConcept C127413603 @default.
- W4294975264 hasConcept C1276947 @default.
- W4294975264 hasConcept C13662910 @default.
- W4294975264 hasConcept C153180895 @default.
- W4294975264 hasConcept C154945302 @default.
- W4294975264 hasConcept C170154142 @default.
- W4294975264 hasConcept C18555067 @default.
- W4294975264 hasConcept C2777515770 @default.
- W4294975264 hasConcept C2778216619 @default.
- W4294975264 hasConcept C28490314 @default.
- W4294975264 hasConcept C31972630 @default.
- W4294975264 hasConcept C41008148 @default.
- W4294975264 hasConcept C50644808 @default.
- W4294975264 hasConcept C71924100 @default.
- W4294975264 hasConcept C81363708 @default.
- W4294975264 hasConcept C99508421 @default.
- W4294975264 hasConceptScore W4294975264C121332964 @default.
- W4294975264 hasConceptScore W4294975264C126838900 @default.
- W4294975264 hasConceptScore W4294975264C127413603 @default.
- W4294975264 hasConceptScore W4294975264C1276947 @default.
- W4294975264 hasConceptScore W4294975264C13662910 @default.
- W4294975264 hasConceptScore W4294975264C153180895 @default.
- W4294975264 hasConceptScore W4294975264C154945302 @default.
- W4294975264 hasConceptScore W4294975264C170154142 @default.
- W4294975264 hasConceptScore W4294975264C18555067 @default.
- W4294975264 hasConceptScore W4294975264C2777515770 @default.
- W4294975264 hasConceptScore W4294975264C2778216619 @default.
- W4294975264 hasConceptScore W4294975264C28490314 @default.
- W4294975264 hasConceptScore W4294975264C31972630 @default.
- W4294975264 hasConceptScore W4294975264C41008148 @default.
- W4294975264 hasConceptScore W4294975264C50644808 @default.
- W4294975264 hasConceptScore W4294975264C71924100 @default.
- W4294975264 hasConceptScore W4294975264C81363708 @default.
- W4294975264 hasConceptScore W4294975264C99508421 @default.
- W4294975264 hasLocation W42949752641 @default.
- W4294975264 hasLocation W42949752642 @default.
- W4294975264 hasOpenAccess W4294975264 @default.
- W4294975264 hasPrimaryLocation W42949752641 @default.
- W4294975264 hasRelatedWork W1891287906 @default.
- W4294975264 hasRelatedWork W2000407620 @default.
- W4294975264 hasRelatedWork W2036807459 @default.
- W4294975264 hasRelatedWork W2144724818 @default.
- W4294975264 hasRelatedWork W2748454020 @default.
- W4294975264 hasRelatedWork W2767651786 @default.
- W4294975264 hasRelatedWork W2775347418 @default.
- W4294975264 hasRelatedWork W2912288872 @default.
- W4294975264 hasRelatedWork W3181746755 @default.
- W4294975264 hasRelatedWork W564581980 @default.
- W4294975264 isParatext "false" @default.
- W4294975264 isRetracted "false" @default.
- W4294975264 workType "article" @default.