Matches in SemOpenAlex for { <https://semopenalex.org/work/W4294975743> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4294975743 abstract "Rule-based automated cinematography has proven to be a very effective means of speeding up the filmmaking process and reducing costs by incorporating the rules of many camera shots into the optimization process. However, it is observed that many well-known directors developed their style of lens language and sometimes even violate the conventional rules. It is a very challenging task to exploit these directors' versatile styles into the automatic cinematography framework due to two main reasons: (i) it is not trivial to translate these styles into a library of rules; (ii) the data can be collected from existing films are very limited and the accuracy is insufficient for learning purposes. In this paper, we propose a novel unified Reinforcement learning-based Text to Animation (RT2A) framework that can apply reinforcement learning to automatic cinematography. In RT2A, the decisions by the director on the camera settings are recorded and can be utilized for the future auto cinematography agent training process. A well-designed reward functionality has been proposed that guides the algorithm to find the best policy and mimic the human director's decision-making process for the camera selection of each scene. The experimental results show that the proposed RT2A can effectively imitate the directors' usage of lens language patterns. Compared to the reference algorithm, RT2A can achieve a gain of up to 50% in camera placement acceptance rate and 80% in imitating the rhythm of camera switching." @default.
- W4294975743 created "2022-09-08" @default.
- W4294975743 creator A5001325170 @default.
- W4294975743 creator A5014420614 @default.
- W4294975743 creator A5037211075 @default.
- W4294975743 creator A5071499106 @default.
- W4294975743 date "2022-08-01" @default.
- W4294975743 modified "2023-10-09" @default.
- W4294975743 title "Enabling Automatic Cinematography with Reinforcement Learning" @default.
- W4294975743 cites W1661793846 @default.
- W4294975743 cites W2074520446 @default.
- W4294975743 cites W2532670842 @default.
- W4294975743 cites W2738077708 @default.
- W4294975743 cites W2746553466 @default.
- W4294975743 cites W2786344118 @default.
- W4294975743 cites W2894160111 @default.
- W4294975743 cites W2897149789 @default.
- W4294975743 cites W2913281951 @default.
- W4294975743 cites W3003268826 @default.
- W4294975743 cites W3048609641 @default.
- W4294975743 cites W357674266 @default.
- W4294975743 cites W4297684257 @default.
- W4294975743 doi "https://doi.org/10.1109/mipr54900.2022.00025" @default.
- W4294975743 hasPublicationYear "2022" @default.
- W4294975743 type Work @default.
- W4294975743 citedByCount "2" @default.
- W4294975743 countsByYear W42949757432023 @default.
- W4294975743 crossrefType "proceedings-article" @default.
- W4294975743 hasAuthorship W4294975743A5001325170 @default.
- W4294975743 hasAuthorship W4294975743A5014420614 @default.
- W4294975743 hasAuthorship W4294975743A5037211075 @default.
- W4294975743 hasAuthorship W4294975743A5071499106 @default.
- W4294975743 hasConcept C100991257 @default.
- W4294975743 hasConcept C107457646 @default.
- W4294975743 hasConcept C121684516 @default.
- W4294975743 hasConcept C127413603 @default.
- W4294975743 hasConcept C142362112 @default.
- W4294975743 hasConcept C153349607 @default.
- W4294975743 hasConcept C154945302 @default.
- W4294975743 hasConcept C165696696 @default.
- W4294975743 hasConcept C199360897 @default.
- W4294975743 hasConcept C201995342 @default.
- W4294975743 hasConcept C2780451532 @default.
- W4294975743 hasConcept C31972630 @default.
- W4294975743 hasConcept C38652104 @default.
- W4294975743 hasConcept C41008148 @default.
- W4294975743 hasConcept C502989409 @default.
- W4294975743 hasConcept C519580073 @default.
- W4294975743 hasConcept C52119013 @default.
- W4294975743 hasConcept C68389820 @default.
- W4294975743 hasConcept C97541855 @default.
- W4294975743 hasConcept C98045186 @default.
- W4294975743 hasConceptScore W4294975743C100991257 @default.
- W4294975743 hasConceptScore W4294975743C107457646 @default.
- W4294975743 hasConceptScore W4294975743C121684516 @default.
- W4294975743 hasConceptScore W4294975743C127413603 @default.
- W4294975743 hasConceptScore W4294975743C142362112 @default.
- W4294975743 hasConceptScore W4294975743C153349607 @default.
- W4294975743 hasConceptScore W4294975743C154945302 @default.
- W4294975743 hasConceptScore W4294975743C165696696 @default.
- W4294975743 hasConceptScore W4294975743C199360897 @default.
- W4294975743 hasConceptScore W4294975743C201995342 @default.
- W4294975743 hasConceptScore W4294975743C2780451532 @default.
- W4294975743 hasConceptScore W4294975743C31972630 @default.
- W4294975743 hasConceptScore W4294975743C38652104 @default.
- W4294975743 hasConceptScore W4294975743C41008148 @default.
- W4294975743 hasConceptScore W4294975743C502989409 @default.
- W4294975743 hasConceptScore W4294975743C519580073 @default.
- W4294975743 hasConceptScore W4294975743C52119013 @default.
- W4294975743 hasConceptScore W4294975743C68389820 @default.
- W4294975743 hasConceptScore W4294975743C97541855 @default.
- W4294975743 hasConceptScore W4294975743C98045186 @default.
- W4294975743 hasLocation W42949757431 @default.
- W4294975743 hasOpenAccess W4294975743 @default.
- W4294975743 hasPrimaryLocation W42949757431 @default.
- W4294975743 hasRelatedWork W2112583990 @default.
- W4294975743 hasRelatedWork W2318739095 @default.
- W4294975743 hasRelatedWork W2503263515 @default.
- W4294975743 hasRelatedWork W2582888691 @default.
- W4294975743 hasRelatedWork W2611071312 @default.
- W4294975743 hasRelatedWork W2901995816 @default.
- W4294975743 hasRelatedWork W2907748453 @default.
- W4294975743 hasRelatedWork W2972041192 @default.
- W4294975743 hasRelatedWork W3162254085 @default.
- W4294975743 hasRelatedWork W3216912890 @default.
- W4294975743 isParatext "false" @default.
- W4294975743 isRetracted "false" @default.
- W4294975743 workType "article" @default.