Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295004920> ?p ?o ?g. }
- W4295004920 abstract "Lung nodules are abnormal growths and lesions may exist. Both lungs may have nodules. Most lung nodules are harmless (not cancerous/malignant). Pulmonary nodules are rare in lung cancer. X-rays and CT scans identify the lung nodules. Doctors may term the growth a lung spot, coin lesion, or shadow. It is necessary to obtain properly computed tomography (CT) scans of the lungs to get an accurate diagnosis and a good estimate of the severity of lung cancer. This study aims to design and evaluate a deep learning (DL) algorithm for identifying pulmonary nodules (PNs) using the LUNA-16 dataset and examine the prevalence of PNs using DB-Net. The paper states that a new, resource-efficient deep learning architecture is called for, and it has been given the name of DB-NET. When a physician orders a CT scan, they need to employ an accurate and efficient lung nodule segmentation method because they need to detect lung cancer at an early stage. However, segmentation of lung nodules is a difficult task because of the nodules' characteristics on the CT image as well as the nodules' concealed shape, visual quality, and context. The DB-NET model architecture is presented as a resource-efficient deep learning solution for handling the challenge at hand in this paper. Furthermore, it incorporates the Mish nonlinearity function and the mask class weights to improve segmentation effectiveness. In addition to the LUNA-16 dataset, which contained 1200 lung nodules collected during the LUNA-16 test, the LUNA-16 dataset was extensively used to train and assess the proposed model. The DB-NET architecture surpasses the existing U-NET model by a dice coefficient index of 88.89%, and it also achieves a similar level of accuracy to that of human experts." @default.
- W4295004920 created "2022-09-09" @default.
- W4295004920 creator A5004909453 @default.
- W4295004920 creator A5036773854 @default.
- W4295004920 creator A5063411048 @default.
- W4295004920 creator A5074544822 @default.
- W4295004920 date "2022-09-08" @default.
- W4295004920 modified "2023-10-14" @default.
- W4295004920 title "A bi-directional deep learning architecture for lung nodule semantic segmentation" @default.
- W4295004920 cites W1901129140 @default.
- W4295004920 cites W2884436604 @default.
- W4295004920 cites W2888436377 @default.
- W4295004920 cites W2917761629 @default.
- W4295004920 cites W2922848531 @default.
- W4295004920 cites W2936495845 @default.
- W4295004920 cites W2947556306 @default.
- W4295004920 cites W2954996726 @default.
- W4295004920 cites W2991257761 @default.
- W4295004920 cites W2999770235 @default.
- W4295004920 cites W3006170182 @default.
- W4295004920 cites W3010471571 @default.
- W4295004920 cites W3010869159 @default.
- W4295004920 cites W3038627768 @default.
- W4295004920 cites W3047356033 @default.
- W4295004920 cites W3081606947 @default.
- W4295004920 cites W3083116714 @default.
- W4295004920 cites W3089485449 @default.
- W4295004920 cites W3097169953 @default.
- W4295004920 cites W3100866969 @default.
- W4295004920 cites W3102722375 @default.
- W4295004920 cites W3114083731 @default.
- W4295004920 cites W3120253959 @default.
- W4295004920 cites W3123332641 @default.
- W4295004920 cites W3123982987 @default.
- W4295004920 cites W3126534809 @default.
- W4295004920 cites W3127316871 @default.
- W4295004920 cites W3129251458 @default.
- W4295004920 cites W3131194762 @default.
- W4295004920 cites W3132080514 @default.
- W4295004920 cites W3134446874 @default.
- W4295004920 cites W3134447168 @default.
- W4295004920 cites W3135073716 @default.
- W4295004920 cites W3138078459 @default.
- W4295004920 cites W3153361253 @default.
- W4295004920 cites W3154690376 @default.
- W4295004920 cites W3156621694 @default.
- W4295004920 cites W3157162100 @default.
- W4295004920 cites W3160602834 @default.
- W4295004920 cites W3163717494 @default.
- W4295004920 cites W3165621184 @default.
- W4295004920 cites W3176923149 @default.
- W4295004920 cites W3182997145 @default.
- W4295004920 cites W3184815416 @default.
- W4295004920 cites W3205213980 @default.
- W4295004920 cites W3209855943 @default.
- W4295004920 cites W3213290340 @default.
- W4295004920 doi "https://doi.org/10.1007/s00371-022-02657-1" @default.
- W4295004920 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36097497" @default.
- W4295004920 hasPublicationYear "2022" @default.
- W4295004920 type Work @default.
- W4295004920 citedByCount "4" @default.
- W4295004920 countsByYear W42950049202022 @default.
- W4295004920 countsByYear W42950049202023 @default.
- W4295004920 crossrefType "journal-article" @default.
- W4295004920 hasAuthorship W4295004920A5004909453 @default.
- W4295004920 hasAuthorship W4295004920A5036773854 @default.
- W4295004920 hasAuthorship W4295004920A5063411048 @default.
- W4295004920 hasAuthorship W4295004920A5074544822 @default.
- W4295004920 hasBestOaLocation W42950049201 @default.
- W4295004920 hasConcept C108583219 @default.
- W4295004920 hasConcept C126322002 @default.
- W4295004920 hasConcept C126838900 @default.
- W4295004920 hasConcept C142724271 @default.
- W4295004920 hasConcept C151730666 @default.
- W4295004920 hasConcept C154945302 @default.
- W4295004920 hasConcept C2776256026 @default.
- W4295004920 hasConcept C2776731575 @default.
- W4295004920 hasConcept C2777714996 @default.
- W4295004920 hasConcept C2779343474 @default.
- W4295004920 hasConcept C41008148 @default.
- W4295004920 hasConcept C71924100 @default.
- W4295004920 hasConcept C86803240 @default.
- W4295004920 hasConcept C89600930 @default.
- W4295004920 hasConceptScore W4295004920C108583219 @default.
- W4295004920 hasConceptScore W4295004920C126322002 @default.
- W4295004920 hasConceptScore W4295004920C126838900 @default.
- W4295004920 hasConceptScore W4295004920C142724271 @default.
- W4295004920 hasConceptScore W4295004920C151730666 @default.
- W4295004920 hasConceptScore W4295004920C154945302 @default.
- W4295004920 hasConceptScore W4295004920C2776256026 @default.
- W4295004920 hasConceptScore W4295004920C2776731575 @default.
- W4295004920 hasConceptScore W4295004920C2777714996 @default.
- W4295004920 hasConceptScore W4295004920C2779343474 @default.
- W4295004920 hasConceptScore W4295004920C41008148 @default.
- W4295004920 hasConceptScore W4295004920C71924100 @default.
- W4295004920 hasConceptScore W4295004920C86803240 @default.
- W4295004920 hasConceptScore W4295004920C89600930 @default.
- W4295004920 hasLocation W42950049201 @default.
- W4295004920 hasLocation W42950049202 @default.
- W4295004920 hasLocation W42950049203 @default.