Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295018148> ?p ?o ?g. }
- W4295018148 abstract "Abstract Resting-state functional magnetic resonance imaging (rsfMRI) has shown considerable promise for improving our understanding of brain function and characterizing various mental and cognitive states in the healthy and disordered brain. However, the lack of accurate and precise estimations of comparable functional patterns across datasets, individuals, and ever-changing brain states in a way that captures both individual variation and inter-subject correspondence limits the clinical utility of rsfMRI and its application to single-subject analyses. We posit that using reliable network templates and advanced group-informed network estimation approaches to accurately and precisely obtain individualized (dynamic) networks that retain cross-subject correspondence while maintaining subject-specific information is one potential solution to overcome the aforementioned barrier when considering cross-study comparability, independence of subject-level estimates, the limited data available in single studies, and the low signal-to-noise ratio (SNR) of rsfMRI. Toward this goal, we first obtained a reliable and replicable network template. We combined rsfMRI data of over 100k individuals across private and public datasets and selected around 58k that meet quality control (QC) criteria. We then applied multi-model-order independent component analysis (ICA) and subsampling to obtain reliable canonical intrinsic connectivity networks (ICNs) across multiple spatial scales. The selected ICNs (i.e., network templates) were also successfully replicated by independently analyzing the data that did not pass the QC criteria, highlighting the robustness of our adaptive template to data quality. We next studied the feasibility of estimating the corresponding subject-specific ICNs using a multivariate-spatially constrained ICA as an example of group-informed network estimation approaches. The results highlight that several factors, including ICNs themselves, data length, and spatial resolution, play key roles in successfully estimating the ICNs at the subject level. Large-scale ICNs, in general, require less data to achieve a specific level of spatial similarity with their templates (as well as within- and between-subject spatial similarity). Moreover, increasing data length can reduce an ICN’s subject-level specificity, suggesting longer scans might not always be desirable. We also show spatial smoothing can alter results, and the positive linear relationship we observed between data length and spatial smoothness (we posit that it is at least partially due to averaging over intrinsic dynamics or individual variation) indicates the importance of considering this factor in studies such as those focused on optimizing data length. Finally, the consistency in the spatial similarity between ICNs estimated using the full-length of data and subset of it across different data lengths may suggest that the lower within-subject spatial similarity in shorter data lengths is not necessarily only defined by lower reliability in ICN estimates; rather, it can also be an indication of brain dynamics (i.e., different subsets of data may reflect different ICN dynamics), and as we increase the data length, the result approaches the average (also known as static) ICN pattern, and therefore loses its distinctiveness." @default.
- W4295018148 created "2022-09-09" @default.
- W4295018148 creator A5001798382 @default.
- W4295018148 creator A5001838062 @default.
- W4295018148 creator A5005163948 @default.
- W4295018148 creator A5005667479 @default.
- W4295018148 creator A5006264499 @default.
- W4295018148 creator A5007663400 @default.
- W4295018148 creator A5011715160 @default.
- W4295018148 creator A5018920191 @default.
- W4295018148 creator A5019983016 @default.
- W4295018148 creator A5022073041 @default.
- W4295018148 creator A5022342401 @default.
- W4295018148 creator A5030435608 @default.
- W4295018148 creator A5032850756 @default.
- W4295018148 creator A5038490078 @default.
- W4295018148 creator A5045830802 @default.
- W4295018148 creator A5048912567 @default.
- W4295018148 creator A5050834331 @default.
- W4295018148 creator A5059512905 @default.
- W4295018148 creator A5060798483 @default.
- W4295018148 creator A5066509392 @default.
- W4295018148 creator A5068170740 @default.
- W4295018148 creator A5069018183 @default.
- W4295018148 creator A5069137051 @default.
- W4295018148 creator A5069686854 @default.
- W4295018148 creator A5072488699 @default.
- W4295018148 creator A5072827705 @default.
- W4295018148 creator A5073577615 @default.
- W4295018148 creator A5076662617 @default.
- W4295018148 creator A5076899010 @default.
- W4295018148 creator A5081327890 @default.
- W4295018148 creator A5084628616 @default.
- W4295018148 creator A5086789107 @default.
- W4295018148 creator A5087017146 @default.
- W4295018148 creator A5087792260 @default.
- W4295018148 creator A5090341800 @default.
- W4295018148 creator A5091103793 @default.
- W4295018148 date "2022-09-05" @default.
- W4295018148 modified "2023-10-15" @default.
- W4295018148 title "Canonical and Replicable Multi-Scale Intrinsic Connectivity Networks in 100k+ Resting-State fMRI Datasets" @default.
- W4295018148 cites W1026628557 @default.
- W4295018148 cites W1458229720 @default.
- W4295018148 cites W1560723556 @default.
- W4295018148 cites W1943480391 @default.
- W4295018148 cites W1973741448 @default.
- W4295018148 cites W1978161337 @default.
- W4295018148 cites W1985327120 @default.
- W4295018148 cites W1986589478 @default.
- W4295018148 cites W2002526995 @default.
- W4295018148 cites W2021189660 @default.
- W4295018148 cites W2024729467 @default.
- W4295018148 cites W2061662249 @default.
- W4295018148 cites W2069481424 @default.
- W4295018148 cites W2078524519 @default.
- W4295018148 cites W2080233806 @default.
- W4295018148 cites W2084892943 @default.
- W4295018148 cites W2091177453 @default.
- W4295018148 cites W2095642798 @default.
- W4295018148 cites W2098787985 @default.
- W4295018148 cites W2099567248 @default.
- W4295018148 cites W2103386389 @default.
- W4295018148 cites W2108384452 @default.
- W4295018148 cites W2110253210 @default.
- W4295018148 cites W2111902267 @default.
- W4295018148 cites W2113506774 @default.
- W4295018148 cites W2115971978 @default.
- W4295018148 cites W2124698428 @default.
- W4295018148 cites W2160939822 @default.
- W4295018148 cites W2167868121 @default.
- W4295018148 cites W2202068811 @default.
- W4295018148 cites W2212967118 @default.
- W4295018148 cites W2336932237 @default.
- W4295018148 cites W2403664975 @default.
- W4295018148 cites W2590651237 @default.
- W4295018148 cites W2737241688 @default.
- W4295018148 cites W2738849673 @default.
- W4295018148 cites W2741941708 @default.
- W4295018148 cites W2749978186 @default.
- W4295018148 cites W2949962615 @default.
- W4295018148 cites W2950455940 @default.
- W4295018148 cites W2951985747 @default.
- W4295018148 cites W2971494328 @default.
- W4295018148 cites W2972363687 @default.
- W4295018148 cites W2981635040 @default.
- W4295018148 cites W2985741994 @default.
- W4295018148 cites W2995808388 @default.
- W4295018148 cites W3001572095 @default.
- W4295018148 cites W3032464132 @default.
- W4295018148 cites W3035816145 @default.
- W4295018148 cites W3048396787 @default.
- W4295018148 cites W3049723401 @default.
- W4295018148 cites W3094991151 @default.
- W4295018148 cites W3111607968 @default.
- W4295018148 cites W3159911522 @default.
- W4295018148 cites W3173725561 @default.
- W4295018148 cites W3179250407 @default.
- W4295018148 cites W3207543955 @default.
- W4295018148 cites W4200027775 @default.
- W4295018148 cites W4200115246 @default.