Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295025118> ?p ?o ?g. }
- W4295025118 endingPage "211" @default.
- W4295025118 startingPage "191" @default.
- W4295025118 abstract "Pneumonia is a microorganism infection that causes chronic inflammation of the human lung cells. Chest X-ray imaging is the most well-known screening approach used for detecting pneumonia in the early stages. While chest-Xray images are mostly blurry with low illumination, a strong feature extraction approach is required for promising identification performance. A new hybrid explainable deep learning framework is proposed for accurate pneumonia disease identification using chest X-ray images. The proposed hybrid workflow is developed by fusing the capabilities of both ensemble convolutional networks and the Transformer Encoder mechanism. The ensemble learning backbone is used to extract strong features from the raw input X-ray images in two different scenarios: ensemble A (i.e., DenseNet201, VGG16, and GoogleNet) and ensemble B (i.e., DenseNet201, InceptionResNetV2, and Xception). Whereas, the Transformer Encoder is built based on the self-attention mechanism with multilayer perceptron (MLP) for accurate disease identification. The visual explainable saliency maps are derived to emphasize the crucial predicted regions on the input X-ray images. The end-to-end training process of the proposed deep learning models over all scenarios is performed for binary and multi-class classification scenarios. The proposed hybrid deep learning model recorded 99.21% classification performance in terms of overall accuracy and F1-score for the binary classification task, while it achieved 98.19% accuracy and 97.29% F1-score for multi-classification task. For the ensemble binary identification scenario, ensemble A recorded 97.22% accuracy and 97.14% F1-score, while ensemble B achieved 96.44% for both accuracy and F1-score. For the ensemble multiclass identification scenario, ensemble A recorded 97.2% accuracy and 95.8% F1-score, while ensemble B recorded 96.4% accuracy and 94.9% F1-score. The proposed hybrid deep learning framework could provide promising and encouraging explainable identification performance comparing with the individual, ensemble models, or even the latest AI models in the literature. The code is available here: https://github.com/chiagoziemchima/Pneumonia_Identificaton." @default.
- W4295025118 created "2022-09-09" @default.
- W4295025118 creator A5012360964 @default.
- W4295025118 creator A5013765647 @default.
- W4295025118 creator A5022092645 @default.
- W4295025118 creator A5023088189 @default.
- W4295025118 creator A5023770275 @default.
- W4295025118 creator A5030817080 @default.
- W4295025118 creator A5057518673 @default.
- W4295025118 creator A5077931586 @default.
- W4295025118 date "2023-06-01" @default.
- W4295025118 modified "2023-10-11" @default.
- W4295025118 title "A hybrid explainable ensemble transformer encoder for pneumonia identification from chest X-ray images" @default.
- W4295025118 cites W2194775991 @default.
- W4295025118 cites W2531409750 @default.
- W4295025118 cites W2788633781 @default.
- W4295025118 cites W2789813974 @default.
- W4295025118 cites W2793956967 @default.
- W4295025118 cites W2809504579 @default.
- W4295025118 cites W2924911266 @default.
- W4295025118 cites W2952817546 @default.
- W4295025118 cites W2956123709 @default.
- W4295025118 cites W2960170118 @default.
- W4295025118 cites W2963420686 @default.
- W4295025118 cites W2963466845 @default.
- W4295025118 cites W2964350391 @default.
- W4295025118 cites W2969978177 @default.
- W4295025118 cites W2980182400 @default.
- W4295025118 cites W2980584449 @default.
- W4295025118 cites W2982383444 @default.
- W4295025118 cites W2995942064 @default.
- W4295025118 cites W2998957378 @default.
- W4295025118 cites W3006630357 @default.
- W4295025118 cites W3006679688 @default.
- W4295025118 cites W3013277995 @default.
- W4295025118 cites W3014206051 @default.
- W4295025118 cites W3018007233 @default.
- W4295025118 cites W3033750579 @default.
- W4295025118 cites W3036552116 @default.
- W4295025118 cites W3038837241 @default.
- W4295025118 cites W3081748421 @default.
- W4295025118 cites W3082053613 @default.
- W4295025118 cites W3093785423 @default.
- W4295025118 cites W3096812112 @default.
- W4295025118 cites W3098934825 @default.
- W4295025118 cites W3100715666 @default.
- W4295025118 cites W3101156210 @default.
- W4295025118 cites W3110602624 @default.
- W4295025118 cites W3120327591 @default.
- W4295025118 cites W3126410406 @default.
- W4295025118 cites W3126486838 @default.
- W4295025118 cites W3127102567 @default.
- W4295025118 cites W3132646223 @default.
- W4295025118 cites W3155049403 @default.
- W4295025118 cites W3156331990 @default.
- W4295025118 cites W3162418282 @default.
- W4295025118 cites W3166322331 @default.
- W4295025118 cites W3167147947 @default.
- W4295025118 cites W3198276338 @default.
- W4295025118 cites W3199035974 @default.
- W4295025118 cites W3201066509 @default.
- W4295025118 cites W3203341530 @default.
- W4295025118 cites W3210586215 @default.
- W4295025118 cites W3211983116 @default.
- W4295025118 cites W4200301898 @default.
- W4295025118 cites W4206706211 @default.
- W4295025118 cites W4210248601 @default.
- W4295025118 cites W4210625202 @default.
- W4295025118 cites W4226033341 @default.
- W4295025118 cites W4283022701 @default.
- W4295025118 cites W4299734609 @default.
- W4295025118 cites W4312528579 @default.
- W4295025118 doi "https://doi.org/10.1016/j.jare.2022.08.021" @default.
- W4295025118 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36084812" @default.
- W4295025118 hasPublicationYear "2023" @default.
- W4295025118 type Work @default.
- W4295025118 citedByCount "17" @default.
- W4295025118 countsByYear W42950251182022 @default.
- W4295025118 countsByYear W42950251182023 @default.
- W4295025118 crossrefType "journal-article" @default.
- W4295025118 hasAuthorship W4295025118A5012360964 @default.
- W4295025118 hasAuthorship W4295025118A5013765647 @default.
- W4295025118 hasAuthorship W4295025118A5022092645 @default.
- W4295025118 hasAuthorship W4295025118A5023088189 @default.
- W4295025118 hasAuthorship W4295025118A5023770275 @default.
- W4295025118 hasAuthorship W4295025118A5030817080 @default.
- W4295025118 hasAuthorship W4295025118A5057518673 @default.
- W4295025118 hasAuthorship W4295025118A5077931586 @default.
- W4295025118 hasBestOaLocation W42950251181 @default.
- W4295025118 hasConcept C101738243 @default.
- W4295025118 hasConcept C108583219 @default.
- W4295025118 hasConcept C111919701 @default.
- W4295025118 hasConcept C118505674 @default.
- W4295025118 hasConcept C119898033 @default.
- W4295025118 hasConcept C121332964 @default.
- W4295025118 hasConcept C12267149 @default.
- W4295025118 hasConcept C153180895 @default.
- W4295025118 hasConcept C154945302 @default.