Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295035260> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4295035260 abstract "Positron emission tomography (PET) is a powerful tool because it can acquire quantitative functional images. To obtain quantitative images, attenuation correction (AC) is indispensable, but it sometimes fails in cases such as CT system problems or other causes. PET images not having CT images also appear in measurements using small animal PET systems that are not combined with a CT system or a PET/MRI system. In this case, the generation of CT images from PET images using deep learning (DL) may be a possible solution. Consequently we tried this approach using measured small animal PET/CT images. We used pix2pix generative adversarial networks (GANs) for deep learning. After training the neural network using some of the measured small animal PET/CT image pairs, we predicted synthetic CT (sCT) images from the PET images of rat heads and compared them with the measured CT images. After the training, we could generate sCT images that had similar structures to the rat’s skull, although there were some differences observed in the headrest parts. We conclude that sCT image generation from PET images is possible and has the potential to be used for AC in small animal PET systems." @default.
- W4295035260 created "2022-09-09" @default.
- W4295035260 creator A5013425297 @default.
- W4295035260 creator A5021151911 @default.
- W4295035260 creator A5086759974 @default.
- W4295035260 date "2021-10-16" @default.
- W4295035260 modified "2023-09-27" @default.
- W4295035260 title "Prediction of CT Images from PET Images Using Deep Learning Approach for Small Animal Systems" @default.
- W4295035260 cites W2015801659 @default.
- W4295035260 cites W2077737902 @default.
- W4295035260 cites W2138053284 @default.
- W4295035260 cites W2603922658 @default.
- W4295035260 cites W2808966480 @default.
- W4295035260 cites W2885906943 @default.
- W4295035260 cites W2981126002 @default.
- W4295035260 cites W2982718246 @default.
- W4295035260 cites W3011179489 @default.
- W4295035260 cites W3018680849 @default.
- W4295035260 cites W3021956574 @default.
- W4295035260 cites W3038705451 @default.
- W4295035260 cites W3042780672 @default.
- W4295035260 cites W3105747145 @default.
- W4295035260 doi "https://doi.org/10.1109/nss/mic44867.2021.9875591" @default.
- W4295035260 hasPublicationYear "2021" @default.
- W4295035260 type Work @default.
- W4295035260 citedByCount "0" @default.
- W4295035260 crossrefType "proceedings-article" @default.
- W4295035260 hasAuthorship W4295035260A5013425297 @default.
- W4295035260 hasAuthorship W4295035260A5021151911 @default.
- W4295035260 hasAuthorship W4295035260A5086759974 @default.
- W4295035260 hasConcept C108583219 @default.
- W4295035260 hasConcept C123688308 @default.
- W4295035260 hasConcept C127077266 @default.
- W4295035260 hasConcept C141379421 @default.
- W4295035260 hasConcept C153180895 @default.
- W4295035260 hasConcept C154945302 @default.
- W4295035260 hasConcept C2775842073 @default.
- W4295035260 hasConcept C2989005 @default.
- W4295035260 hasConcept C31972630 @default.
- W4295035260 hasConcept C41008148 @default.
- W4295035260 hasConcept C71924100 @default.
- W4295035260 hasConceptScore W4295035260C108583219 @default.
- W4295035260 hasConceptScore W4295035260C123688308 @default.
- W4295035260 hasConceptScore W4295035260C127077266 @default.
- W4295035260 hasConceptScore W4295035260C141379421 @default.
- W4295035260 hasConceptScore W4295035260C153180895 @default.
- W4295035260 hasConceptScore W4295035260C154945302 @default.
- W4295035260 hasConceptScore W4295035260C2775842073 @default.
- W4295035260 hasConceptScore W4295035260C2989005 @default.
- W4295035260 hasConceptScore W4295035260C31972630 @default.
- W4295035260 hasConceptScore W4295035260C41008148 @default.
- W4295035260 hasConceptScore W4295035260C71924100 @default.
- W4295035260 hasLocation W42950352601 @default.
- W4295035260 hasOpenAccess W4295035260 @default.
- W4295035260 hasPrimaryLocation W42950352601 @default.
- W4295035260 hasRelatedWork W1594110822 @default.
- W4295035260 hasRelatedWork W2001728779 @default.
- W4295035260 hasRelatedWork W2021729604 @default.
- W4295035260 hasRelatedWork W2023966332 @default.
- W4295035260 hasRelatedWork W2094058642 @default.
- W4295035260 hasRelatedWork W2107701361 @default.
- W4295035260 hasRelatedWork W2157196804 @default.
- W4295035260 hasRelatedWork W3190282587 @default.
- W4295035260 hasRelatedWork W4206214763 @default.
- W4295035260 hasRelatedWork W80451724 @default.
- W4295035260 isParatext "false" @default.
- W4295035260 isRetracted "false" @default.
- W4295035260 workType "article" @default.