Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295036639> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4295036639 abstract "Monitoring and predicting wind power output more precisely can be very beneficial for an increasingly competitive Wind Power industry. Although many advances have been made throughout the last decades, the production forecast is still based mainly on the manufacturing power curve and wind speed. Even though this approach is very useful, especially during the design phase, it does not consider other factors that affect production, such as topography, weather conditions, and wind features. A more precise prediction model that is able to recognize production fluctuation and is tailored using current operational data is proposed in this paper. The model analyzes the performance through Meteorological Mast Data (Met Mast Data) and then uses it as an input to monitor and predict power output. As a result, the model proposed achieves high accuracy and can be key to understanding the wind turbine asset’s behavior throughout its lifespan, assisting operators in decision making to increase overall power production." @default.
- W4295036639 created "2022-09-09" @default.
- W4295036639 creator A5002038053 @default.
- W4295036639 creator A5040513240 @default.
- W4295036639 date "2022-07-20" @default.
- W4295036639 modified "2023-09-27" @default.
- W4295036639 title "The Use of Machine Learning and Performance Concept to Monitor and Predict Wind Power Output" @default.
- W4295036639 cites W1985255373 @default.
- W4295036639 cites W2128420091 @default.
- W4295036639 cites W2153172796 @default.
- W4295036639 cites W2762898042 @default.
- W4295036639 cites W2802582463 @default.
- W4295036639 cites W2896784243 @default.
- W4295036639 cites W2904285504 @default.
- W4295036639 cites W2911964244 @default.
- W4295036639 cites W2937342641 @default.
- W4295036639 cites W2940948605 @default.
- W4295036639 cites W2954622293 @default.
- W4295036639 cites W2962639525 @default.
- W4295036639 cites W2989742866 @default.
- W4295036639 cites W3024448271 @default.
- W4295036639 cites W3037336979 @default.
- W4295036639 cites W3047491077 @default.
- W4295036639 cites W3176228592 @default.
- W4295036639 cites W3177150444 @default.
- W4295036639 cites W4224230803 @default.
- W4295036639 cites W4226399438 @default.
- W4295036639 cites W4249419658 @default.
- W4295036639 doi "https://doi.org/10.1109/icecet55527.2022.9873076" @default.
- W4295036639 hasPublicationYear "2022" @default.
- W4295036639 type Work @default.
- W4295036639 citedByCount "1" @default.
- W4295036639 countsByYear W42950366392023 @default.
- W4295036639 crossrefType "proceedings-article" @default.
- W4295036639 hasAuthorship W4295036639A5002038053 @default.
- W4295036639 hasAuthorship W4295036639A5040513240 @default.
- W4295036639 hasBestOaLocation W42950366392 @default.
- W4295036639 hasConcept C119599485 @default.
- W4295036639 hasConcept C121332964 @default.
- W4295036639 hasConcept C127413603 @default.
- W4295036639 hasConcept C139719470 @default.
- W4295036639 hasConcept C153294291 @default.
- W4295036639 hasConcept C161067210 @default.
- W4295036639 hasConcept C162324750 @default.
- W4295036639 hasConcept C163258240 @default.
- W4295036639 hasConcept C203014093 @default.
- W4295036639 hasConcept C2778348673 @default.
- W4295036639 hasConcept C2778449969 @default.
- W4295036639 hasConcept C2779655021 @default.
- W4295036639 hasConcept C2779726688 @default.
- W4295036639 hasConcept C41008148 @default.
- W4295036639 hasConcept C62520636 @default.
- W4295036639 hasConcept C78519656 @default.
- W4295036639 hasConcept C78600449 @default.
- W4295036639 hasConcept C86803240 @default.
- W4295036639 hasConceptScore W4295036639C119599485 @default.
- W4295036639 hasConceptScore W4295036639C121332964 @default.
- W4295036639 hasConceptScore W4295036639C127413603 @default.
- W4295036639 hasConceptScore W4295036639C139719470 @default.
- W4295036639 hasConceptScore W4295036639C153294291 @default.
- W4295036639 hasConceptScore W4295036639C161067210 @default.
- W4295036639 hasConceptScore W4295036639C162324750 @default.
- W4295036639 hasConceptScore W4295036639C163258240 @default.
- W4295036639 hasConceptScore W4295036639C203014093 @default.
- W4295036639 hasConceptScore W4295036639C2778348673 @default.
- W4295036639 hasConceptScore W4295036639C2778449969 @default.
- W4295036639 hasConceptScore W4295036639C2779655021 @default.
- W4295036639 hasConceptScore W4295036639C2779726688 @default.
- W4295036639 hasConceptScore W4295036639C41008148 @default.
- W4295036639 hasConceptScore W4295036639C62520636 @default.
- W4295036639 hasConceptScore W4295036639C78519656 @default.
- W4295036639 hasConceptScore W4295036639C78600449 @default.
- W4295036639 hasConceptScore W4295036639C86803240 @default.
- W4295036639 hasFunder F4320322468 @default.
- W4295036639 hasLocation W42950366391 @default.
- W4295036639 hasLocation W42950366392 @default.
- W4295036639 hasOpenAccess W4295036639 @default.
- W4295036639 hasPrimaryLocation W42950366391 @default.
- W4295036639 hasRelatedWork W1597574528 @default.
- W4295036639 hasRelatedWork W1759278499 @default.
- W4295036639 hasRelatedWork W2077798528 @default.
- W4295036639 hasRelatedWork W2903434600 @default.
- W4295036639 hasRelatedWork W2945777225 @default.
- W4295036639 hasRelatedWork W2991327743 @default.
- W4295036639 hasRelatedWork W4205630227 @default.
- W4295036639 hasRelatedWork W4312678308 @default.
- W4295036639 hasRelatedWork W4322762746 @default.
- W4295036639 hasRelatedWork W897793427 @default.
- W4295036639 isParatext "false" @default.
- W4295036639 isRetracted "false" @default.
- W4295036639 workType "article" @default.