Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295036659> ?p ?o ?g. }
- W4295036659 abstract "In this paper, we present a self-learning deep reinforcement learning-based framework for industrial pick-and-place tasks in a cluttered environment through intelligent prehensile robotic grasping. This approach aims to enable agents learn and perform pick and place regular and irregular objects in clutter through robotic grasping in order to enhance both quantity and quality in various industries. In order to do so, we design a Markov decision process (MDP) and deploy a model-free off-policy temporal difference algorithm Q-learning. We utilize end-to-end DenseNet-121 architecture fully convolutional network (FCN) in extended format for Q-function approximation. A pixelwise parameterization scheme is designed to calculate the pixelwise maps of action values. Rewards are allocated according to the success of the action performed. The proposed approach doesn’t require any domain specifications, geometrical knowledge of objects or any extraordinary resources such as huge datasets or memory requirements. We have presented the training and testing results of our approach compared to its different variants and random density clutter sizes." @default.
- W4295036659 created "2022-09-09" @default.
- W4295036659 creator A5033220689 @default.
- W4295036659 creator A5070035384 @default.
- W4295036659 creator A5080658012 @default.
- W4295036659 date "2022-07-20" @default.
- W4295036659 modified "2023-09-27" @default.
- W4295036659 title "Prehensile Robotic pick-and-place in clutter with Deep Reinforcement Learning" @default.
- W4295036659 cites W1503925285 @default.
- W4295036659 cites W1587979646 @default.
- W4295036659 cites W1966747088 @default.
- W4295036659 cites W1977655452 @default.
- W4295036659 cites W1978131245 @default.
- W4295036659 cites W1980602022 @default.
- W4295036659 cites W1981667747 @default.
- W4295036659 cites W1999156278 @default.
- W4295036659 cites W2016726354 @default.
- W4295036659 cites W2063189785 @default.
- W4295036659 cites W2085949256 @default.
- W4295036659 cites W2088043683 @default.
- W4295036659 cites W2090855657 @default.
- W4295036659 cites W2110762409 @default.
- W4295036659 cites W2145339207 @default.
- W4295036659 cites W2571360927 @default.
- W4295036659 cites W2581263672 @default.
- W4295036659 cites W2761826485 @default.
- W4295036659 cites W2791987562 @default.
- W4295036659 cites W2791992091 @default.
- W4295036659 cites W2884776720 @default.
- W4295036659 cites W2894561081 @default.
- W4295036659 cites W2901099638 @default.
- W4295036659 cites W2910668273 @default.
- W4295036659 cites W2922432177 @default.
- W4295036659 cites W2938421504 @default.
- W4295036659 cites W2943634310 @default.
- W4295036659 cites W2953431737 @default.
- W4295036659 cites W2962746398 @default.
- W4295036659 cites W2962759351 @default.
- W4295036659 cites W2963033241 @default.
- W4295036659 cites W2963403593 @default.
- W4295036659 cites W2963654160 @default.
- W4295036659 cites W2963678509 @default.
- W4295036659 cites W2969014098 @default.
- W4295036659 cites W2973390148 @default.
- W4295036659 cites W3004003541 @default.
- W4295036659 cites W3088158297 @default.
- W4295036659 cites W3100738175 @default.
- W4295036659 cites W3112422759 @default.
- W4295036659 cites W3123212791 @default.
- W4295036659 cites W3198826682 @default.
- W4295036659 cites W4214717370 @default.
- W4295036659 doi "https://doi.org/10.1109/icecet55527.2022.9873426" @default.
- W4295036659 hasPublicationYear "2022" @default.
- W4295036659 type Work @default.
- W4295036659 citedByCount "1" @default.
- W4295036659 countsByYear W42950366592023 @default.
- W4295036659 crossrefType "proceedings-article" @default.
- W4295036659 hasAuthorship W4295036659A5033220689 @default.
- W4295036659 hasAuthorship W4295036659A5070035384 @default.
- W4295036659 hasAuthorship W4295036659A5080658012 @default.
- W4295036659 hasConcept C105795698 @default.
- W4295036659 hasConcept C106189395 @default.
- W4295036659 hasConcept C111919701 @default.
- W4295036659 hasConcept C119857082 @default.
- W4295036659 hasConcept C121332964 @default.
- W4295036659 hasConcept C132094186 @default.
- W4295036659 hasConcept C136380597 @default.
- W4295036659 hasConcept C14036430 @default.
- W4295036659 hasConcept C151730666 @default.
- W4295036659 hasConcept C154945302 @default.
- W4295036659 hasConcept C159886148 @default.
- W4295036659 hasConcept C17511633 @default.
- W4295036659 hasConcept C2780791683 @default.
- W4295036659 hasConcept C33923547 @default.
- W4295036659 hasConcept C41008148 @default.
- W4295036659 hasConcept C554190296 @default.
- W4295036659 hasConcept C62520636 @default.
- W4295036659 hasConcept C76155785 @default.
- W4295036659 hasConcept C78458016 @default.
- W4295036659 hasConcept C86803240 @default.
- W4295036659 hasConcept C90509273 @default.
- W4295036659 hasConcept C97541855 @default.
- W4295036659 hasConcept C98045186 @default.
- W4295036659 hasConceptScore W4295036659C105795698 @default.
- W4295036659 hasConceptScore W4295036659C106189395 @default.
- W4295036659 hasConceptScore W4295036659C111919701 @default.
- W4295036659 hasConceptScore W4295036659C119857082 @default.
- W4295036659 hasConceptScore W4295036659C121332964 @default.
- W4295036659 hasConceptScore W4295036659C132094186 @default.
- W4295036659 hasConceptScore W4295036659C136380597 @default.
- W4295036659 hasConceptScore W4295036659C14036430 @default.
- W4295036659 hasConceptScore W4295036659C151730666 @default.
- W4295036659 hasConceptScore W4295036659C154945302 @default.
- W4295036659 hasConceptScore W4295036659C159886148 @default.
- W4295036659 hasConceptScore W4295036659C17511633 @default.
- W4295036659 hasConceptScore W4295036659C2780791683 @default.
- W4295036659 hasConceptScore W4295036659C33923547 @default.
- W4295036659 hasConceptScore W4295036659C41008148 @default.
- W4295036659 hasConceptScore W4295036659C554190296 @default.
- W4295036659 hasConceptScore W4295036659C62520636 @default.