Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295036710> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4295036710 abstract "The upsurge in social media data due to the proliferation of Web 2.0 applications has escalated scholarly studies within the sentiment analysis domain in recent times. Sentiment Analysis usually considered a text classification task in Natural Language Processing (NLP) classifies the views, attitudes, and feelings expressed by people concerning a particular organization or entity. This unstructured textual data can be pre-processed and represented as feature vectors which then serve as input to a machine learning algorithm for sentiment classification. In this process, feature selection which is a binary problem becomes an essential component of the SA exercise. We present a metaheuristic-based approach for optimal selection of features subset via the binary particle swarm optimization (BPSO) metaheuristic algorithm with the view to improve sentiment classification accuracy on the sentiment labelled sentences benchmark dataset. K-Nearest Neighbours, Naïve Bayes, and Support Vector Machine classifiers were employed as baseline classifiers to train the features. Before the sentiment classification process, the BPSO is utilized for selecting the optimal text features subset from the data. We train our sentiment labelled sentences benchmark dataset with SVM, NB, and k-NN using the selected optimal feature subset for sentiment classification. The results of the experiments conducted show impressive performance using our proposed approach for optimal text feature selection and sentiment classification compared to the baseline classifiers." @default.
- W4295036710 created "2022-09-09" @default.
- W4295036710 creator A5019835122 @default.
- W4295036710 creator A5020231952 @default.
- W4295036710 creator A5060512412 @default.
- W4295036710 creator A5070141508 @default.
- W4295036710 date "2022-07-20" @default.
- W4295036710 modified "2023-10-18" @default.
- W4295036710 title "Text-based feature selection using binary particle swarm optimization for sentiment analysis" @default.
- W4295036710 cites W1870481460 @default.
- W4295036710 cites W1871142974 @default.
- W4295036710 cites W191206311 @default.
- W4295036710 cites W1964176984 @default.
- W4295036710 cites W2017337590 @default.
- W4295036710 cites W2067624665 @default.
- W4295036710 cites W2100347631 @default.
- W4295036710 cites W2114535528 @default.
- W4295036710 cites W2125213524 @default.
- W4295036710 cites W2152195021 @default.
- W4295036710 cites W2264629467 @default.
- W4295036710 cites W2402954031 @default.
- W4295036710 cites W2783515600 @default.
- W4295036710 cites W2910636646 @default.
- W4295036710 cites W2991175436 @default.
- W4295036710 cites W3034202715 @default.
- W4295036710 cites W319996907 @default.
- W4295036710 cites W3215546779 @default.
- W4295036710 doi "https://doi.org/10.1109/icecet55527.2022.9872823" @default.
- W4295036710 hasPublicationYear "2022" @default.
- W4295036710 type Work @default.
- W4295036710 citedByCount "1" @default.
- W4295036710 countsByYear W42950367102023 @default.
- W4295036710 crossrefType "proceedings-article" @default.
- W4295036710 hasAuthorship W4295036710A5019835122 @default.
- W4295036710 hasAuthorship W4295036710A5020231952 @default.
- W4295036710 hasAuthorship W4295036710A5060512412 @default.
- W4295036710 hasAuthorship W4295036710A5070141508 @default.
- W4295036710 hasConcept C109718341 @default.
- W4295036710 hasConcept C119857082 @default.
- W4295036710 hasConcept C12267149 @default.
- W4295036710 hasConcept C124101348 @default.
- W4295036710 hasConcept C13280743 @default.
- W4295036710 hasConcept C138885662 @default.
- W4295036710 hasConcept C148483581 @default.
- W4295036710 hasConcept C153180895 @default.
- W4295036710 hasConcept C154945302 @default.
- W4295036710 hasConcept C185798385 @default.
- W4295036710 hasConcept C205649164 @default.
- W4295036710 hasConcept C2776401178 @default.
- W4295036710 hasConcept C41008148 @default.
- W4295036710 hasConcept C41895202 @default.
- W4295036710 hasConcept C52001869 @default.
- W4295036710 hasConcept C66402592 @default.
- W4295036710 hasConcept C66905080 @default.
- W4295036710 hasConcept C81917197 @default.
- W4295036710 hasConcept C85617194 @default.
- W4295036710 hasConceptScore W4295036710C109718341 @default.
- W4295036710 hasConceptScore W4295036710C119857082 @default.
- W4295036710 hasConceptScore W4295036710C12267149 @default.
- W4295036710 hasConceptScore W4295036710C124101348 @default.
- W4295036710 hasConceptScore W4295036710C13280743 @default.
- W4295036710 hasConceptScore W4295036710C138885662 @default.
- W4295036710 hasConceptScore W4295036710C148483581 @default.
- W4295036710 hasConceptScore W4295036710C153180895 @default.
- W4295036710 hasConceptScore W4295036710C154945302 @default.
- W4295036710 hasConceptScore W4295036710C185798385 @default.
- W4295036710 hasConceptScore W4295036710C205649164 @default.
- W4295036710 hasConceptScore W4295036710C2776401178 @default.
- W4295036710 hasConceptScore W4295036710C41008148 @default.
- W4295036710 hasConceptScore W4295036710C41895202 @default.
- W4295036710 hasConceptScore W4295036710C52001869 @default.
- W4295036710 hasConceptScore W4295036710C66402592 @default.
- W4295036710 hasConceptScore W4295036710C66905080 @default.
- W4295036710 hasConceptScore W4295036710C81917197 @default.
- W4295036710 hasConceptScore W4295036710C85617194 @default.
- W4295036710 hasLocation W42950367101 @default.
- W4295036710 hasOpenAccess W4295036710 @default.
- W4295036710 hasPrimaryLocation W42950367101 @default.
- W4295036710 hasRelatedWork W2809687065 @default.
- W4295036710 hasRelatedWork W2985924212 @default.
- W4295036710 hasRelatedWork W3186233728 @default.
- W4295036710 hasRelatedWork W4312478656 @default.
- W4295036710 hasRelatedWork W4317422767 @default.
- W4295036710 hasRelatedWork W4319752445 @default.
- W4295036710 hasRelatedWork W4322008322 @default.
- W4295036710 hasRelatedWork W4327772909 @default.
- W4295036710 hasRelatedWork W4364301914 @default.
- W4295036710 hasRelatedWork W2345184372 @default.
- W4295036710 isParatext "false" @default.
- W4295036710 isRetracted "false" @default.
- W4295036710 workType "article" @default.