Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295046702> ?p ?o ?g. }
- W4295046702 endingPage "6011" @default.
- W4295046702 startingPage "6003" @default.
- W4295046702 abstract "Since the underlying mechanisms of neurorehabilitation are not fully understood, the prognosis of stroke recovery faces significant difficulties. Recovery outcomes can vary when undergoing different treatments; however, few models have been developed to predict patient outcomes toward multiple treatments. In this study, we aimed to investigate the potential of predicting a treatment's outcome using a deep learning prognosis model developed for another treatment. A total of 15 stroke survivors were recruited in this study, and their clinical and physiological data were measured before and after the treatment (clinical measurement, biomechanical measurement, and electroencephalography (EEG) measurement). Multiple biomarkers and clinical scale scores of patients who had completed manual stretching rehabilitation training were analyzed. Data were used to train deep learning prognosis models, yielding an 87.50% prognosis accuracy. Pre-trained prognosis models were then applied to patients who completed robotic-assisted stretching training, yielding a prognosis accuracy of 91.84%. Interpretation of the deep learning models revealed several key factors influencing patients' recoveries, including the plantar-flexor active range of movement (r = 0.930, P = 0.02), dorsiflexor strength (r = 0.932, P = 0.002), plantar-flexor strength (r = 0.930, P = 0.002), EEG power spectrum density and EEG functional connectivities in the occipital, central parietal, and parietal areas. Our results suggest (i) that deep learning can be a promising method for accurate prediction of the recovery potential of stroke patients in clinical scenarios and (ii) that it can be successfully applied to different rehabilitation trainings with explainable factors." @default.
- W4295046702 created "2022-09-09" @default.
- W4295046702 creator A5003374477 @default.
- W4295046702 creator A5014114126 @default.
- W4295046702 creator A5015959794 @default.
- W4295046702 creator A5017003750 @default.
- W4295046702 creator A5041018238 @default.
- W4295046702 creator A5069662511 @default.
- W4295046702 creator A5081177693 @default.
- W4295046702 creator A5090323662 @default.
- W4295046702 date "2022-12-01" @default.
- W4295046702 modified "2023-10-14" @default.
- W4295046702 title "A Transferable Deep Learning Prognosis Model for Predicting Stroke Patients' Recovery in Different Rehabilitation Trainings" @default.
- W4295046702 cites W1982687341 @default.
- W4295046702 cites W2014783053 @default.
- W4295046702 cites W2029230130 @default.
- W4295046702 cites W2034967036 @default.
- W4295046702 cites W2049929913 @default.
- W4295046702 cites W2085043781 @default.
- W4295046702 cites W2098816497 @default.
- W4295046702 cites W2112855530 @default.
- W4295046702 cites W2125818796 @default.
- W4295046702 cites W2125890869 @default.
- W4295046702 cites W2139049236 @default.
- W4295046702 cites W2140632361 @default.
- W4295046702 cites W2149350407 @default.
- W4295046702 cites W2152173818 @default.
- W4295046702 cites W2152380947 @default.
- W4295046702 cites W2165698076 @default.
- W4295046702 cites W2344439428 @default.
- W4295046702 cites W2405421013 @default.
- W4295046702 cites W2507380695 @default.
- W4295046702 cites W2553488624 @default.
- W4295046702 cites W2600258552 @default.
- W4295046702 cites W2668255820 @default.
- W4295046702 cites W2756347284 @default.
- W4295046702 cites W2766416772 @default.
- W4295046702 cites W2799372544 @default.
- W4295046702 cites W2808112130 @default.
- W4295046702 cites W2809172753 @default.
- W4295046702 cites W2892741787 @default.
- W4295046702 cites W2905307056 @default.
- W4295046702 cites W2919115771 @default.
- W4295046702 cites W2920372052 @default.
- W4295046702 cites W2946772588 @default.
- W4295046702 cites W2953616380 @default.
- W4295046702 cites W2957129430 @default.
- W4295046702 cites W2963355311 @default.
- W4295046702 cites W2963915399 @default.
- W4295046702 cites W2972981253 @default.
- W4295046702 cites W3011124015 @default.
- W4295046702 cites W3016696635 @default.
- W4295046702 cites W3080810277 @default.
- W4295046702 cites W3084226913 @default.
- W4295046702 cites W3174278992 @default.
- W4295046702 cites W3193101388 @default.
- W4295046702 cites W3200059418 @default.
- W4295046702 cites W3205850668 @default.
- W4295046702 cites W3209217280 @default.
- W4295046702 cites W3210083015 @default.
- W4295046702 cites W4200334514 @default.
- W4295046702 cites W4210242902 @default.
- W4295046702 cites W4214807529 @default.
- W4295046702 doi "https://doi.org/10.1109/jbhi.2022.3205436" @default.
- W4295046702 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36083954" @default.
- W4295046702 hasPublicationYear "2022" @default.
- W4295046702 type Work @default.
- W4295046702 citedByCount "3" @default.
- W4295046702 countsByYear W42950467022022 @default.
- W4295046702 countsByYear W42950467022023 @default.
- W4295046702 crossrefType "journal-article" @default.
- W4295046702 hasAuthorship W4295046702A5003374477 @default.
- W4295046702 hasAuthorship W4295046702A5014114126 @default.
- W4295046702 hasAuthorship W4295046702A5015959794 @default.
- W4295046702 hasAuthorship W4295046702A5017003750 @default.
- W4295046702 hasAuthorship W4295046702A5041018238 @default.
- W4295046702 hasAuthorship W4295046702A5069662511 @default.
- W4295046702 hasAuthorship W4295046702A5081177693 @default.
- W4295046702 hasAuthorship W4295046702A5090323662 @default.
- W4295046702 hasBestOaLocation W42950467021 @default.
- W4295046702 hasConcept C108583219 @default.
- W4295046702 hasConcept C118552586 @default.
- W4295046702 hasConcept C127413603 @default.
- W4295046702 hasConcept C154945302 @default.
- W4295046702 hasConcept C1862650 @default.
- W4295046702 hasConcept C2778818304 @default.
- W4295046702 hasConcept C2780645631 @default.
- W4295046702 hasConcept C41008148 @default.
- W4295046702 hasConcept C47177892 @default.
- W4295046702 hasConcept C522805319 @default.
- W4295046702 hasConcept C71924100 @default.
- W4295046702 hasConcept C78519656 @default.
- W4295046702 hasConcept C99508421 @default.
- W4295046702 hasConceptScore W4295046702C108583219 @default.
- W4295046702 hasConceptScore W4295046702C118552586 @default.
- W4295046702 hasConceptScore W4295046702C127413603 @default.
- W4295046702 hasConceptScore W4295046702C154945302 @default.
- W4295046702 hasConceptScore W4295046702C1862650 @default.