Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295064639> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4295064639 endingPage "17" @default.
- W4295064639 startingPage "11" @default.
- W4295064639 abstract "Predicting the price of electricity is crucial for the operation of power systems. Short-term electricity price forecasting deals with forecasts from an hour to a day ahead. Hourly-ahead forecasts offer expected prices to market participants before operation hours. This is especially useful for effective bidding strategies where the bidding amount can be reviewed or changed before the operation hours. Nevertheless, many existing models have relatively low prediction accuracy. Furthermore, single prediction models are typically less accurate for different scenarios. Thus, a hybrid model comprising least squares support vector machine (LSSVM) and genetic algorithm (GA) was developed in this work to predict electricity prices with higher accuracy. This model was tested on the Ontario electricity market. The inputs, which were the hourly Ontario electricity price (HOEP) and demand for the previous seven days, as well as 1-h pre-dispatch price (PDP), were optimized by GA to prevent losing potentially important inputs. At the same time, the LSSVM parameters were optimized by GA to obtain accurate forecasts. The hybrid LSSVM-GA model was shown to produce an average mean absolute percentage error (MAPE) of 8.13% and the structure of this model is less complex compared with other models developed in previous studies. This is due to the fact that only two algorithms were used (LSSVM and GA), with the load and HOEP for the week preceding the forecasting hour as the inputs. Based on the results, it is concluded that the proposed hybrid algorithm is a promising alternative to produce good electricity price forecasts." @default.
- W4295064639 created "2022-09-10" @default.
- W4295064639 creator A5003808034 @default.
- W4295064639 creator A5005876857 @default.
- W4295064639 creator A5053793508 @default.
- W4295064639 creator A5091148707 @default.
- W4295064639 date "2022-08-31" @default.
- W4295064639 modified "2023-09-26" @default.
- W4295064639 title "NEXT-HOUR ELECTRICITY PRICE FORECASTING USING LEAST SQUARES SUPPORT VECTOR MACHINE AND GENETIC ALGORITHM" @default.
- W4295064639 doi "https://doi.org/10.11113/aej.v12.17276" @default.
- W4295064639 hasPublicationYear "2022" @default.
- W4295064639 type Work @default.
- W4295064639 citedByCount "0" @default.
- W4295064639 crossrefType "journal-article" @default.
- W4295064639 hasAuthorship W4295064639A5003808034 @default.
- W4295064639 hasAuthorship W4295064639A5005876857 @default.
- W4295064639 hasAuthorship W4295064639A5053793508 @default.
- W4295064639 hasAuthorship W4295064639A5091148707 @default.
- W4295064639 hasBestOaLocation W42950646391 @default.
- W4295064639 hasConcept C105795698 @default.
- W4295064639 hasConcept C11413529 @default.
- W4295064639 hasConcept C119599485 @default.
- W4295064639 hasConcept C119857082 @default.
- W4295064639 hasConcept C12267149 @default.
- W4295064639 hasConcept C126255220 @default.
- W4295064639 hasConcept C127413603 @default.
- W4295064639 hasConcept C145828037 @default.
- W4295064639 hasConcept C146733006 @default.
- W4295064639 hasConcept C149782125 @default.
- W4295064639 hasConcept C150217764 @default.
- W4295064639 hasConcept C162324750 @default.
- W4295064639 hasConcept C175444787 @default.
- W4295064639 hasConcept C185429906 @default.
- W4295064639 hasConcept C206658404 @default.
- W4295064639 hasConcept C2781104810 @default.
- W4295064639 hasConcept C33923547 @default.
- W4295064639 hasConcept C41008148 @default.
- W4295064639 hasConcept C50644808 @default.
- W4295064639 hasConcept C8880873 @default.
- W4295064639 hasConcept C9233905 @default.
- W4295064639 hasConcept C9936470 @default.
- W4295064639 hasConceptScore W4295064639C105795698 @default.
- W4295064639 hasConceptScore W4295064639C11413529 @default.
- W4295064639 hasConceptScore W4295064639C119599485 @default.
- W4295064639 hasConceptScore W4295064639C119857082 @default.
- W4295064639 hasConceptScore W4295064639C12267149 @default.
- W4295064639 hasConceptScore W4295064639C126255220 @default.
- W4295064639 hasConceptScore W4295064639C127413603 @default.
- W4295064639 hasConceptScore W4295064639C145828037 @default.
- W4295064639 hasConceptScore W4295064639C146733006 @default.
- W4295064639 hasConceptScore W4295064639C149782125 @default.
- W4295064639 hasConceptScore W4295064639C150217764 @default.
- W4295064639 hasConceptScore W4295064639C162324750 @default.
- W4295064639 hasConceptScore W4295064639C175444787 @default.
- W4295064639 hasConceptScore W4295064639C185429906 @default.
- W4295064639 hasConceptScore W4295064639C206658404 @default.
- W4295064639 hasConceptScore W4295064639C2781104810 @default.
- W4295064639 hasConceptScore W4295064639C33923547 @default.
- W4295064639 hasConceptScore W4295064639C41008148 @default.
- W4295064639 hasConceptScore W4295064639C50644808 @default.
- W4295064639 hasConceptScore W4295064639C8880873 @default.
- W4295064639 hasConceptScore W4295064639C9233905 @default.
- W4295064639 hasConceptScore W4295064639C9936470 @default.
- W4295064639 hasIssue "3" @default.
- W4295064639 hasLocation W42950646391 @default.
- W4295064639 hasOpenAccess W4295064639 @default.
- W4295064639 hasPrimaryLocation W42950646391 @default.
- W4295064639 hasRelatedWork W1528304589 @default.
- W4295064639 hasRelatedWork W2051573103 @default.
- W4295064639 hasRelatedWork W2077699106 @default.
- W4295064639 hasRelatedWork W2088353375 @default.
- W4295064639 hasRelatedWork W2168977745 @default.
- W4295064639 hasRelatedWork W2361524917 @default.
- W4295064639 hasRelatedWork W2546521769 @default.
- W4295064639 hasRelatedWork W2565353095 @default.
- W4295064639 hasRelatedWork W2990538238 @default.
- W4295064639 hasRelatedWork W4295064639 @default.
- W4295064639 hasVolume "12" @default.
- W4295064639 isParatext "false" @default.
- W4295064639 isRetracted "false" @default.
- W4295064639 workType "article" @default.