Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295074176> ?p ?o ?g. }
- W4295074176 endingPage "9" @default.
- W4295074176 startingPage "1" @default.
- W4295074176 abstract "In order to realize rapid fault detection and early warning, a fault detection method based on normal operation data is proposed. Firstly, the fault detection model is constructed based on the improved deep neural network of the auto-encoder. Secondly, the unsupervised pretraining and supervised fine-tuning of the network are finished through the operation data in a normal state to solve the contradiction between the small fault sample and the large training sample required by the deep network model. The adaptive threshold of reconstruction error is used as the evaluation index of the fault state to reduce the influence of environmental factors. Experimental results show that the proposed method can detect faults effectively." @default.
- W4295074176 created "2022-09-10" @default.
- W4295074176 creator A5040854870 @default.
- W4295074176 creator A5065927024 @default.
- W4295074176 creator A5066043427 @default.
- W4295074176 creator A5075029094 @default.
- W4295074176 creator A5080620053 @default.
- W4295074176 creator A5083096281 @default.
- W4295074176 date "2022-09-09" @default.
- W4295074176 modified "2023-09-26" @default.
- W4295074176 title "Fault Early Warning Based on Improved Deep Neural Network of Auto-Encoder" @default.
- W4295074176 cites W2125621954 @default.
- W4295074176 cites W2324044936 @default.
- W4295074176 cites W2341973567 @default.
- W4295074176 cites W2404692435 @default.
- W4295074176 cites W2480364715 @default.
- W4295074176 cites W2516828042 @default.
- W4295074176 cites W2553245249 @default.
- W4295074176 cites W2587510517 @default.
- W4295074176 cites W2601590138 @default.
- W4295074176 cites W2618530766 @default.
- W4295074176 cites W2744686084 @default.
- W4295074176 cites W2771498160 @default.
- W4295074176 cites W2790195878 @default.
- W4295074176 cites W2807272465 @default.
- W4295074176 cites W2885245002 @default.
- W4295074176 cites W2898608498 @default.
- W4295074176 cites W2905949437 @default.
- W4295074176 cites W2908884823 @default.
- W4295074176 cites W2911658506 @default.
- W4295074176 cites W2915337192 @default.
- W4295074176 cites W2916091221 @default.
- W4295074176 cites W2963637946 @default.
- W4295074176 cites W2992028701 @default.
- W4295074176 cites W3082600888 @default.
- W4295074176 cites W3112955596 @default.
- W4295074176 cites W3164954748 @default.
- W4295074176 cites W3196006413 @default.
- W4295074176 cites W3196325333 @default.
- W4295074176 cites W3210305734 @default.
- W4295074176 cites W3215750280 @default.
- W4295074176 cites W4206053582 @default.
- W4295074176 cites W4226402968 @default.
- W4295074176 doi "https://doi.org/10.1155/2022/5767642" @default.
- W4295074176 hasPublicationYear "2022" @default.
- W4295074176 type Work @default.
- W4295074176 citedByCount "0" @default.
- W4295074176 crossrefType "journal-article" @default.
- W4295074176 hasAuthorship W4295074176A5040854870 @default.
- W4295074176 hasAuthorship W4295074176A5065927024 @default.
- W4295074176 hasAuthorship W4295074176A5066043427 @default.
- W4295074176 hasAuthorship W4295074176A5075029094 @default.
- W4295074176 hasAuthorship W4295074176A5080620053 @default.
- W4295074176 hasAuthorship W4295074176A5083096281 @default.
- W4295074176 hasBestOaLocation W42950741761 @default.
- W4295074176 hasConcept C101738243 @default.
- W4295074176 hasConcept C111919701 @default.
- W4295074176 hasConcept C11413529 @default.
- W4295074176 hasConcept C118505674 @default.
- W4295074176 hasConcept C124101348 @default.
- W4295074176 hasConcept C127313418 @default.
- W4295074176 hasConcept C152745839 @default.
- W4295074176 hasConcept C153180895 @default.
- W4295074176 hasConcept C154945302 @default.
- W4295074176 hasConcept C165205528 @default.
- W4295074176 hasConcept C172707124 @default.
- W4295074176 hasConcept C175551986 @default.
- W4295074176 hasConcept C185592680 @default.
- W4295074176 hasConcept C198531522 @default.
- W4295074176 hasConcept C41008148 @default.
- W4295074176 hasConcept C43617362 @default.
- W4295074176 hasConcept C48103436 @default.
- W4295074176 hasConcept C50644808 @default.
- W4295074176 hasConcept C79403827 @default.
- W4295074176 hasConceptScore W4295074176C101738243 @default.
- W4295074176 hasConceptScore W4295074176C111919701 @default.
- W4295074176 hasConceptScore W4295074176C11413529 @default.
- W4295074176 hasConceptScore W4295074176C118505674 @default.
- W4295074176 hasConceptScore W4295074176C124101348 @default.
- W4295074176 hasConceptScore W4295074176C127313418 @default.
- W4295074176 hasConceptScore W4295074176C152745839 @default.
- W4295074176 hasConceptScore W4295074176C153180895 @default.
- W4295074176 hasConceptScore W4295074176C154945302 @default.
- W4295074176 hasConceptScore W4295074176C165205528 @default.
- W4295074176 hasConceptScore W4295074176C172707124 @default.
- W4295074176 hasConceptScore W4295074176C175551986 @default.
- W4295074176 hasConceptScore W4295074176C185592680 @default.
- W4295074176 hasConceptScore W4295074176C198531522 @default.
- W4295074176 hasConceptScore W4295074176C41008148 @default.
- W4295074176 hasConceptScore W4295074176C43617362 @default.
- W4295074176 hasConceptScore W4295074176C48103436 @default.
- W4295074176 hasConceptScore W4295074176C50644808 @default.
- W4295074176 hasConceptScore W4295074176C79403827 @default.
- W4295074176 hasLocation W42950741761 @default.
- W4295074176 hasOpenAccess W4295074176 @default.
- W4295074176 hasPrimaryLocation W42950741761 @default.
- W4295074176 hasRelatedWork W2292254049 @default.
- W4295074176 hasRelatedWork W2592385986 @default.