Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295116087> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4295116087 endingPage "112420" @default.
- W4295116087 startingPage "112420" @default.
- W4295116087 abstract "Ocean wave simulations must be conducted in real-time and are more complicated than other natural scenery simulations. This study proposes a novel ocean wave simulation method that inputs the spatiotemporal sequences of the wave height field obtained by a wave spectrum formula and the fast Fourier transform (FFT) algorithm into a convolutional long short-term memory (ConvLSTM) training model. The method resolves the problems of poor real-time performance and authenticity in the traditional ocean wave simulation process. The ocean wave simulation method calculates the wave height field rapidly using the ConvLSTM-based model rather than the traditional FFT method. Finally, it accelerates the wave simulation process and predicts the height field at a future time. The model was evaluated in a simulation experiment on two kinds of wave spectra. The experimental results confirmed the realism of the waves simulated by the proposed model. The computational speed of the ConvLSTM model exceeds that of the FFT method, especially as the sample size and length of the prediction sequence increase, indicating the effectiveness and feasibility of the ConvLSTM model in accelerating the FFT algorithm. • The wave height fields obtained by FFT algorithm can be regarded as a sequence of height maps with spatiotemporal features. • A deep learning model for spatiotemporal prediction named ConvLSTM can replace FFT algorithm in predicting height fields. • The ConvLSTM model can output one or more height maps in a single execution and outperforms FFT in real-time performance." @default.
- W4295116087 created "2022-09-10" @default.
- W4295116087 creator A5002039083 @default.
- W4295116087 creator A5013360611 @default.
- W4295116087 creator A5028138849 @default.
- W4295116087 creator A5042471405 @default.
- W4295116087 creator A5054143954 @default.
- W4295116087 date "2022-11-01" @default.
- W4295116087 modified "2023-09-27" @default.
- W4295116087 title "3D wave simulation based on a deep learning model for spatiotemporal prediction" @default.
- W4295116087 cites W1985203884 @default.
- W4295116087 cites W2017765063 @default.
- W4295116087 cites W2061853931 @default.
- W4295116087 cites W2070071217 @default.
- W4295116087 cites W2075722563 @default.
- W4295116087 cites W2104805498 @default.
- W4295116087 cites W2107724014 @default.
- W4295116087 cites W2147245887 @default.
- W4295116087 cites W2586894736 @default.
- W4295116087 cites W2802454466 @default.
- W4295116087 cites W2922410938 @default.
- W4295116087 cites W2930664421 @default.
- W4295116087 cites W2939251941 @default.
- W4295116087 cites W2965048304 @default.
- W4295116087 cites W3084018155 @default.
- W4295116087 cites W3109961563 @default.
- W4295116087 cites W3110442907 @default.
- W4295116087 cites W3118676620 @default.
- W4295116087 cites W3138058008 @default.
- W4295116087 cites W3140897233 @default.
- W4295116087 doi "https://doi.org/10.1016/j.oceaneng.2022.112420" @default.
- W4295116087 hasPublicationYear "2022" @default.
- W4295116087 type Work @default.
- W4295116087 citedByCount "5" @default.
- W4295116087 countsByYear W42951160872023 @default.
- W4295116087 crossrefType "journal-article" @default.
- W4295116087 hasAuthorship W4295116087A5002039083 @default.
- W4295116087 hasAuthorship W4295116087A5013360611 @default.
- W4295116087 hasAuthorship W4295116087A5028138849 @default.
- W4295116087 hasAuthorship W4295116087A5042471405 @default.
- W4295116087 hasAuthorship W4295116087A5054143954 @default.
- W4295116087 hasConcept C108583219 @default.
- W4295116087 hasConcept C119857082 @default.
- W4295116087 hasConcept C154945302 @default.
- W4295116087 hasConcept C41008148 @default.
- W4295116087 hasConceptScore W4295116087C108583219 @default.
- W4295116087 hasConceptScore W4295116087C119857082 @default.
- W4295116087 hasConceptScore W4295116087C154945302 @default.
- W4295116087 hasConceptScore W4295116087C41008148 @default.
- W4295116087 hasFunder F4320321001 @default.
- W4295116087 hasLocation W42951160871 @default.
- W4295116087 hasOpenAccess W4295116087 @default.
- W4295116087 hasPrimaryLocation W42951160871 @default.
- W4295116087 hasRelatedWork W2922457425 @default.
- W4295116087 hasRelatedWork W3014300295 @default.
- W4295116087 hasRelatedWork W3164822677 @default.
- W4295116087 hasRelatedWork W3215138031 @default.
- W4295116087 hasRelatedWork W4223943233 @default.
- W4295116087 hasRelatedWork W4225161397 @default.
- W4295116087 hasRelatedWork W4250304930 @default.
- W4295116087 hasRelatedWork W4299487748 @default.
- W4295116087 hasRelatedWork W4309045103 @default.
- W4295116087 hasRelatedWork W4312200629 @default.
- W4295116087 hasVolume "263" @default.
- W4295116087 isParatext "false" @default.
- W4295116087 isRetracted "false" @default.
- W4295116087 workType "article" @default.