Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295117925> ?p ?o ?g. }
- W4295117925 endingPage "118353" @default.
- W4295117925 startingPage "118353" @default.
- W4295117925 abstract "Predicting crystal structure information is a challenging problem in materials science that clearly benefits from artificial intelligence approaches. The leading strategies in machine learning are notoriously data-hungry and although a handful of large crystallographic databases are currently available, their predictive quality has never been assessed. In this article, we have employed composition-driven machine learning models, as well as deep learning, to predict space groups from well known experimental and theoretical databases. The results generated by comprehensive testing indicate that data-abundant repositories such as COD (Crystallography Open Database) and OQMD (Open Quantum Materials Database) do not provide the best models even for heavily populated space groups. Classification models trained on databases such as the Pearson Crystal Database and ICSD (Inorganic Crystal Structure Database), and to a lesser extent the Materials Project, generally outperform their data-richer counterparts due to more balanced distributions of the representative classes. Experimental validation with novel high entropy compounds was used to confirm the predictive value of the different databases and showcase the scope of the machine learning approaches employed." @default.
- W4295117925 created "2022-09-10" @default.
- W4295117925 creator A5070479172 @default.
- W4295117925 creator A5091560329 @default.
- W4295117925 date "2022-11-01" @default.
- W4295117925 modified "2023-10-09" @default.
- W4295117925 title "On the value of popular crystallographic databases for machine learning prediction of space groups" @default.
- W4295117925 cites W1167040955 @default.
- W4295117925 cites W1976492731 @default.
- W4295117925 cites W1991258650 @default.
- W4295117925 cites W1992985800 @default.
- W4295117925 cites W2003975937 @default.
- W4295117925 cites W2004807536 @default.
- W4295117925 cites W2020628257 @default.
- W4295117925 cites W2058085399 @default.
- W4295117925 cites W2065981209 @default.
- W4295117925 cites W2102940758 @default.
- W4295117925 cites W2116825089 @default.
- W4295117925 cites W2134329894 @default.
- W4295117925 cites W2160923526 @default.
- W4295117925 cites W2170505850 @default.
- W4295117925 cites W2278970271 @default.
- W4295117925 cites W2464725281 @default.
- W4295117925 cites W2788484525 @default.
- W4295117925 cites W2803462582 @default.
- W4295117925 cites W2804765537 @default.
- W4295117925 cites W2807070436 @default.
- W4295117925 cites W2902751403 @default.
- W4295117925 cites W2911964244 @default.
- W4295117925 cites W2924281192 @default.
- W4295117925 cites W2933118606 @default.
- W4295117925 cites W2933565232 @default.
- W4295117925 cites W2942023747 @default.
- W4295117925 cites W2949095042 @default.
- W4295117925 cites W2951539866 @default.
- W4295117925 cites W2952598319 @default.
- W4295117925 cites W2968923792 @default.
- W4295117925 cites W2975270375 @default.
- W4295117925 cites W2978707075 @default.
- W4295117925 cites W3006346191 @default.
- W4295117925 cites W3006354545 @default.
- W4295117925 cites W3006668250 @default.
- W4295117925 cites W3026048580 @default.
- W4295117925 cites W3036776898 @default.
- W4295117925 cites W3040330580 @default.
- W4295117925 cites W3045928028 @default.
- W4295117925 cites W3082575732 @default.
- W4295117925 cites W3084317039 @default.
- W4295117925 cites W3087674168 @default.
- W4295117925 cites W3101189603 @default.
- W4295117925 cites W3102027041 @default.
- W4295117925 cites W3109512942 @default.
- W4295117925 cites W3116783766 @default.
- W4295117925 cites W3121069613 @default.
- W4295117925 cites W3123854369 @default.
- W4295117925 cites W3128132817 @default.
- W4295117925 cites W3129696436 @default.
- W4295117925 cites W3134604514 @default.
- W4295117925 cites W3134705661 @default.
- W4295117925 cites W3159176610 @default.
- W4295117925 cites W3164805225 @default.
- W4295117925 cites W3173368955 @default.
- W4295117925 cites W3176473176 @default.
- W4295117925 cites W3178883367 @default.
- W4295117925 cites W3180309787 @default.
- W4295117925 cites W3180884672 @default.
- W4295117925 cites W3201677331 @default.
- W4295117925 cites W4286218415 @default.
- W4295117925 doi "https://doi.org/10.1016/j.actamat.2022.118353" @default.
- W4295117925 hasPublicationYear "2022" @default.
- W4295117925 type Work @default.
- W4295117925 citedByCount "1" @default.
- W4295117925 countsByYear W42951179252023 @default.
- W4295117925 crossrefType "journal-article" @default.
- W4295117925 hasAuthorship W4295117925A5070479172 @default.
- W4295117925 hasAuthorship W4295117925A5091560329 @default.
- W4295117925 hasBestOaLocation W42951179251 @default.
- W4295117925 hasConcept C111919701 @default.
- W4295117925 hasConcept C119857082 @default.
- W4295117925 hasConcept C154945302 @default.
- W4295117925 hasConcept C2778572836 @default.
- W4295117925 hasConcept C41008148 @default.
- W4295117925 hasConcept C77088390 @default.
- W4295117925 hasConceptScore W4295117925C111919701 @default.
- W4295117925 hasConceptScore W4295117925C119857082 @default.
- W4295117925 hasConceptScore W4295117925C154945302 @default.
- W4295117925 hasConceptScore W4295117925C2778572836 @default.
- W4295117925 hasConceptScore W4295117925C41008148 @default.
- W4295117925 hasConceptScore W4295117925C77088390 @default.
- W4295117925 hasFunder F4320323299 @default.
- W4295117925 hasLocation W42951179251 @default.
- W4295117925 hasOpenAccess W4295117925 @default.
- W4295117925 hasPrimaryLocation W42951179251 @default.
- W4295117925 hasRelatedWork W2961085424 @default.
- W4295117925 hasRelatedWork W3046775127 @default.
- W4295117925 hasRelatedWork W3170094116 @default.
- W4295117925 hasRelatedWork W4205958290 @default.
- W4295117925 hasRelatedWork W4285260836 @default.