Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295129504> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4295129504 endingPage "107101" @default.
- W4295129504 startingPage "107101" @default.
- W4295129504 abstract "Currently, the morbidity and mortality of lung cancer rank first among malignant tumors worldwide. Improving the resolution of thin-slice CT of the lung is particularly important for the early diagnosis of lung cancer screening.Aiming at the problems of network training difficulty and low utilization of feature information caused by the deepening of network layers in super-resolution (SR) reconstruction technology, we propose the dual attention mechanism network for single image super-resolution (SISR). Firstly, the feature of a low-resolution image is extracted directly to retain the feature information. Secondly, several independent dual attention mechanism modules are constructed to extract high-frequency details. The introduction of residual connections can effectively solve the gradient disappearance caused by network deepening, and long and short skip connections can effectively enhance the data features. Furthermore, a hybrid loss function speeds up the network's convergence and improves image SR restoration ability. Finally, through the upsampling operation, the reconstructed high-resolution image is obtained.The results on the Set5 dataset for 4 × enlargement show that compared with traditional SR methods such as Bicubic, VDSR, and DRRN, the average PSNR/SSIM is increased by 3.33 dB / 0.079, 0.41 dB / 0.007 and 0.22 dB / 0.006 respectively. The experimental data fully show that DAMN can better restore the image contour features, obtain higher PSNR, SSIM, and better visual effect.Through the DAMN reconstruction method, the image quality can be improved without increasing radiation exposure and scanning time. Radiologists can enhance their confidence in diagnosing early lung cancer, provide a basis for clinical experts to choose treatment plans, formulate follow-up strategies, and benefit patients in the early stage." @default.
- W4295129504 created "2022-09-11" @default.
- W4295129504 creator A5020452677 @default.
- W4295129504 creator A5056974200 @default.
- W4295129504 creator A5074137044 @default.
- W4295129504 date "2022-11-01" @default.
- W4295129504 modified "2023-10-10" @default.
- W4295129504 title "Dual attention mechanism network for lung cancer images super-resolution" @default.
- W4295129504 cites W2049832930 @default.
- W4295129504 cites W2121058967 @default.
- W4295129504 cites W2133665775 @default.
- W4295129504 cites W2157494358 @default.
- W4295129504 cites W2562637781 @default.
- W4295129504 cites W2883311907 @default.
- W4295129504 cites W2910602138 @default.
- W4295129504 cites W3014422499 @default.
- W4295129504 cites W3096319150 @default.
- W4295129504 cites W3181885716 @default.
- W4295129504 cites W3206422938 @default.
- W4295129504 cites W4213164216 @default.
- W4295129504 cites W4286579588 @default.
- W4295129504 doi "https://doi.org/10.1016/j.cmpb.2022.107101" @default.
- W4295129504 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36367483" @default.
- W4295129504 hasPublicationYear "2022" @default.
- W4295129504 type Work @default.
- W4295129504 citedByCount "3" @default.
- W4295129504 countsByYear W42951295042023 @default.
- W4295129504 crossrefType "journal-article" @default.
- W4295129504 hasAuthorship W4295129504A5020452677 @default.
- W4295129504 hasAuthorship W4295129504A5056974200 @default.
- W4295129504 hasAuthorship W4295129504A5074137044 @default.
- W4295129504 hasConcept C110384440 @default.
- W4295129504 hasConcept C11413529 @default.
- W4295129504 hasConcept C115961682 @default.
- W4295129504 hasConcept C138885662 @default.
- W4295129504 hasConcept C153180895 @default.
- W4295129504 hasConcept C154945302 @default.
- W4295129504 hasConcept C155512373 @default.
- W4295129504 hasConcept C2776401178 @default.
- W4295129504 hasConcept C31972630 @default.
- W4295129504 hasConcept C41008148 @default.
- W4295129504 hasConcept C41895202 @default.
- W4295129504 hasConcept C55020928 @default.
- W4295129504 hasConceptScore W4295129504C110384440 @default.
- W4295129504 hasConceptScore W4295129504C11413529 @default.
- W4295129504 hasConceptScore W4295129504C115961682 @default.
- W4295129504 hasConceptScore W4295129504C138885662 @default.
- W4295129504 hasConceptScore W4295129504C153180895 @default.
- W4295129504 hasConceptScore W4295129504C154945302 @default.
- W4295129504 hasConceptScore W4295129504C155512373 @default.
- W4295129504 hasConceptScore W4295129504C2776401178 @default.
- W4295129504 hasConceptScore W4295129504C31972630 @default.
- W4295129504 hasConceptScore W4295129504C41008148 @default.
- W4295129504 hasConceptScore W4295129504C41895202 @default.
- W4295129504 hasConceptScore W4295129504C55020928 @default.
- W4295129504 hasLocation W42951295041 @default.
- W4295129504 hasLocation W42951295042 @default.
- W4295129504 hasOpenAccess W4295129504 @default.
- W4295129504 hasPrimaryLocation W42951295041 @default.
- W4295129504 hasRelatedWork W1983892167 @default.
- W4295129504 hasRelatedWork W1991429770 @default.
- W4295129504 hasRelatedWork W2281134365 @default.
- W4295129504 hasRelatedWork W2607795551 @default.
- W4295129504 hasRelatedWork W2972212393 @default.
- W4295129504 hasRelatedWork W3155117723 @default.
- W4295129504 hasRelatedWork W3199004353 @default.
- W4295129504 hasRelatedWork W4306309518 @default.
- W4295129504 hasRelatedWork W4385574037 @default.
- W4295129504 hasRelatedWork W4386075645 @default.
- W4295129504 hasVolume "226" @default.
- W4295129504 isParatext "false" @default.
- W4295129504 isRetracted "false" @default.
- W4295129504 workType "article" @default.