Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295129670> ?p ?o ?g. }
- W4295129670 endingPage "106078" @default.
- W4295129670 startingPage "106078" @default.
- W4295129670 abstract "Resting-state Magnetic resonance imaging-based parcellation aims to group the voxels/vertices non-invasively based on their connectivity profiles, which has achieved great success in understanding the fundamental organizational principles of the human brain. Given the substantial inter-individual variability, the increasing number of studies focus on individual parcellation. However, current methods perform individual parcellations independently or are based on the group prior, requiring expensive computational costs, precise parcel alignment, and extra group information. In this work, an efficient and flexible parcellation framework of individual cerebral cortex was proposed based on a region growing algorithm by merging the unassigned and neighbor vertex with the highest-correlated parcel iteratively. It considered both consistency with prior atlases and individualized functional homogeneity of parcels, which can be applied to a single individual without parcel alignment and group information. The proposed framework was leveraged to 100 unrelated subjects for functional homogeneity comparison and individual identification, and 186 patients with Parkison's disease for symptom prediction. Results demonstrated our framework outperformed other methods in functional homogeneity, and the generated parcellations provided 100% individual identification accuracy. Moreover, the default mode network (DMN) exhibited higher functional homogeneity, intra-subject parcel reproducibility and fingerprinting accuracy, while the sensorimotor network did the opposite, reflecting that the DMN is the most representative, stable, and individual-identifiable network in the resting state. The correlation analysis showed that the severity of the disease symptoms was related negatively to the similarity of individual parcellation and the atlases of healthy populations. The disease severity can be correctly predicted using machine learning models based on individual topographic features such as parcel similarity and parcel size. In summary, the proposed framework not only significantly improves the functional homogeneity but also captures individualized and disease-related brain topography, serving as a potential tool to explore brain function and disease in the future." @default.
- W4295129670 created "2022-09-11" @default.
- W4295129670 creator A5021255536 @default.
- W4295129670 creator A5051587486 @default.
- W4295129670 creator A5077155065 @default.
- W4295129670 creator A5079007635 @default.
- W4295129670 creator A5083857025 @default.
- W4295129670 creator A5084947448 @default.
- W4295129670 date "2022-11-01" @default.
- W4295129670 modified "2023-10-18" @default.
- W4295129670 title "Atlas-guided parcellation: Individualized functionally-homogenous parcellation in cerebral cortex" @default.
- W4295129670 cites W1687468892 @default.
- W4295129670 cites W1781787094 @default.
- W4295129670 cites W1975192282 @default.
- W4295129670 cites W1983208069 @default.
- W4295129670 cites W1988494453 @default.
- W4295129670 cites W2024729467 @default.
- W4295129670 cites W2073391538 @default.
- W4295129670 cites W2085561705 @default.
- W4295129670 cites W2107499714 @default.
- W4295129670 cites W2111902267 @default.
- W4295129670 cites W2118366819 @default.
- W4295129670 cites W2139474536 @default.
- W4295129670 cites W2140203142 @default.
- W4295129670 cites W2149687651 @default.
- W4295129670 cites W2162261751 @default.
- W4295129670 cites W2339129891 @default.
- W4295129670 cites W2402346616 @default.
- W4295129670 cites W2490926821 @default.
- W4295129670 cites W2499800833 @default.
- W4295129670 cites W2560079766 @default.
- W4295129670 cites W2560693837 @default.
- W4295129670 cites W2579373654 @default.
- W4295129670 cites W2591352631 @default.
- W4295129670 cites W2606796488 @default.
- W4295129670 cites W2610890719 @default.
- W4295129670 cites W2768801566 @default.
- W4295129670 cites W2807819473 @default.
- W4295129670 cites W2896587207 @default.
- W4295129670 cites W2951583631 @default.
- W4295129670 cites W2951617899 @default.
- W4295129670 cites W2952991498 @default.
- W4295129670 cites W2954710854 @default.
- W4295129670 cites W2993240320 @default.
- W4295129670 cites W2996349718 @default.
- W4295129670 cites W3094325446 @default.
- W4295129670 cites W3156846092 @default.
- W4295129670 cites W3159779018 @default.
- W4295129670 cites W3165482596 @default.
- W4295129670 cites W3199842945 @default.
- W4295129670 cites W4225277175 @default.
- W4295129670 cites W4295750005 @default.
- W4295129670 doi "https://doi.org/10.1016/j.compbiomed.2022.106078" @default.
- W4295129670 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36155266" @default.
- W4295129670 hasPublicationYear "2022" @default.
- W4295129670 type Work @default.
- W4295129670 citedByCount "3" @default.
- W4295129670 countsByYear W42951296702023 @default.
- W4295129670 crossrefType "journal-article" @default.
- W4295129670 hasAuthorship W4295129670A5021255536 @default.
- W4295129670 hasAuthorship W4295129670A5051587486 @default.
- W4295129670 hasAuthorship W4295129670A5077155065 @default.
- W4295129670 hasAuthorship W4295129670A5079007635 @default.
- W4295129670 hasAuthorship W4295129670A5083857025 @default.
- W4295129670 hasAuthorship W4295129670A5084947448 @default.
- W4295129670 hasConcept C117220453 @default.
- W4295129670 hasConcept C119857082 @default.
- W4295129670 hasConcept C141516989 @default.
- W4295129670 hasConcept C142259097 @default.
- W4295129670 hasConcept C153180895 @default.
- W4295129670 hasConcept C154945302 @default.
- W4295129670 hasConcept C15744967 @default.
- W4295129670 hasConcept C169760540 @default.
- W4295129670 hasConcept C2524010 @default.
- W4295129670 hasConcept C2779226451 @default.
- W4295129670 hasConcept C2780972224 @default.
- W4295129670 hasConcept C3018011982 @default.
- W4295129670 hasConcept C33923547 @default.
- W4295129670 hasConcept C41008148 @default.
- W4295129670 hasConcept C54170458 @default.
- W4295129670 hasConcept C58693492 @default.
- W4295129670 hasConcept C66324658 @default.
- W4295129670 hasConceptScore W4295129670C117220453 @default.
- W4295129670 hasConceptScore W4295129670C119857082 @default.
- W4295129670 hasConceptScore W4295129670C141516989 @default.
- W4295129670 hasConceptScore W4295129670C142259097 @default.
- W4295129670 hasConceptScore W4295129670C153180895 @default.
- W4295129670 hasConceptScore W4295129670C154945302 @default.
- W4295129670 hasConceptScore W4295129670C15744967 @default.
- W4295129670 hasConceptScore W4295129670C169760540 @default.
- W4295129670 hasConceptScore W4295129670C2524010 @default.
- W4295129670 hasConceptScore W4295129670C2779226451 @default.
- W4295129670 hasConceptScore W4295129670C2780972224 @default.
- W4295129670 hasConceptScore W4295129670C3018011982 @default.
- W4295129670 hasConceptScore W4295129670C33923547 @default.
- W4295129670 hasConceptScore W4295129670C41008148 @default.
- W4295129670 hasConceptScore W4295129670C54170458 @default.
- W4295129670 hasConceptScore W4295129670C58693492 @default.