Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295132078> ?p ?o ?g. }
- W4295132078 endingPage "17" @default.
- W4295132078 startingPage "1" @default.
- W4295132078 abstract "Task optimization scheduling is one of the key concerns of both cloud service providers (CSPs) and cloud users. The CSPs hope to reduce the energy consumption of executing tasks to save costs, while the users are more concerned about shorter task completion time. In cloud computing, multi-queue and multi-cluster (MQMC) is a common resource configuration mode, and batch is a common task commission mode. The task scheduling (TS) in these modes is a multi-objective optimization (MOO) problem, and it is difficult to get the optimal solution. Therefore, the authors proposed a MOO scheduling algorithm for this model based on multiple heterogeneous deep neural networks learning (MHDNNL). The proposed algorithm adopts a collaborative exploration mechanism to generate the samples and use the memory replay mechanism to train. Experimental results show that the proposed algorithm outperforms the benchmark algorithms in minimizing energy consumption and task latency." @default.
- W4295132078 created "2022-09-11" @default.
- W4295132078 creator A5008755085 @default.
- W4295132078 creator A5035639474 @default.
- W4295132078 creator A5036426356 @default.
- W4295132078 creator A5062556289 @default.
- W4295132078 creator A5081385694 @default.
- W4295132078 date "2022-09-09" @default.
- W4295132078 modified "2023-10-01" @default.
- W4295132078 title "MHDNNL" @default.
- W4295132078 cites W1760260609 @default.
- W4295132078 cites W2145339207 @default.
- W4295132078 cites W2150273829 @default.
- W4295132078 cites W2218919311 @default.
- W4295132078 cites W2288848803 @default.
- W4295132078 cites W2560525084 @default.
- W4295132078 cites W2605846973 @default.
- W4295132078 cites W2610383189 @default.
- W4295132078 cites W2616575853 @default.
- W4295132078 cites W2806060259 @default.
- W4295132078 cites W2901292260 @default.
- W4295132078 cites W2907627983 @default.
- W4295132078 cites W2908388082 @default.
- W4295132078 cites W2913594846 @default.
- W4295132078 cites W2917191887 @default.
- W4295132078 cites W2924384958 @default.
- W4295132078 cites W2951774549 @default.
- W4295132078 cites W2966824807 @default.
- W4295132078 cites W2982206554 @default.
- W4295132078 cites W3002068112 @default.
- W4295132078 cites W3022272927 @default.
- W4295132078 cites W3046162336 @default.
- W4295132078 cites W3082277446 @default.
- W4295132078 cites W3091889450 @default.
- W4295132078 cites W3096143487 @default.
- W4295132078 cites W3156939233 @default.
- W4295132078 cites W3159359636 @default.
- W4295132078 cites W4252214219 @default.
- W4295132078 cites W4252624212 @default.
- W4295132078 doi "https://doi.org/10.4018/ijitwe.310053" @default.
- W4295132078 hasPublicationYear "2022" @default.
- W4295132078 type Work @default.
- W4295132078 citedByCount "0" @default.
- W4295132078 crossrefType "journal-article" @default.
- W4295132078 hasAuthorship W4295132078A5008755085 @default.
- W4295132078 hasAuthorship W4295132078A5035639474 @default.
- W4295132078 hasAuthorship W4295132078A5036426356 @default.
- W4295132078 hasAuthorship W4295132078A5062556289 @default.
- W4295132078 hasAuthorship W4295132078A5081385694 @default.
- W4295132078 hasBestOaLocation W42951320781 @default.
- W4295132078 hasConcept C111919701 @default.
- W4295132078 hasConcept C120314980 @default.
- W4295132078 hasConcept C126255220 @default.
- W4295132078 hasConcept C13280743 @default.
- W4295132078 hasConcept C162324750 @default.
- W4295132078 hasConcept C185798385 @default.
- W4295132078 hasConcept C187736073 @default.
- W4295132078 hasConcept C18903297 @default.
- W4295132078 hasConcept C205649164 @default.
- W4295132078 hasConcept C206729178 @default.
- W4295132078 hasConcept C2780165032 @default.
- W4295132078 hasConcept C2780451532 @default.
- W4295132078 hasConcept C33923547 @default.
- W4295132078 hasConcept C41008148 @default.
- W4295132078 hasConcept C76155785 @default.
- W4295132078 hasConcept C79974875 @default.
- W4295132078 hasConcept C82876162 @default.
- W4295132078 hasConcept C86803240 @default.
- W4295132078 hasConceptScore W4295132078C111919701 @default.
- W4295132078 hasConceptScore W4295132078C120314980 @default.
- W4295132078 hasConceptScore W4295132078C126255220 @default.
- W4295132078 hasConceptScore W4295132078C13280743 @default.
- W4295132078 hasConceptScore W4295132078C162324750 @default.
- W4295132078 hasConceptScore W4295132078C185798385 @default.
- W4295132078 hasConceptScore W4295132078C187736073 @default.
- W4295132078 hasConceptScore W4295132078C18903297 @default.
- W4295132078 hasConceptScore W4295132078C205649164 @default.
- W4295132078 hasConceptScore W4295132078C206729178 @default.
- W4295132078 hasConceptScore W4295132078C2780165032 @default.
- W4295132078 hasConceptScore W4295132078C2780451532 @default.
- W4295132078 hasConceptScore W4295132078C33923547 @default.
- W4295132078 hasConceptScore W4295132078C41008148 @default.
- W4295132078 hasConceptScore W4295132078C76155785 @default.
- W4295132078 hasConceptScore W4295132078C79974875 @default.
- W4295132078 hasConceptScore W4295132078C82876162 @default.
- W4295132078 hasConceptScore W4295132078C86803240 @default.
- W4295132078 hasIssue "1" @default.
- W4295132078 hasLocation W42951320781 @default.
- W4295132078 hasOpenAccess W4295132078 @default.
- W4295132078 hasPrimaryLocation W42951320781 @default.
- W4295132078 hasRelatedWork W1882733036 @default.
- W4295132078 hasRelatedWork W1992741870 @default.
- W4295132078 hasRelatedWork W2015013785 @default.
- W4295132078 hasRelatedWork W2157044008 @default.
- W4295132078 hasRelatedWork W2160425906 @default.
- W4295132078 hasRelatedWork W2546696010 @default.
- W4295132078 hasRelatedWork W2576563092 @default.
- W4295132078 hasRelatedWork W2907673208 @default.