Matches in SemOpenAlex for { <https://semopenalex.org/work/W4295136348> ?p ?o ?g. }
- W4295136348 endingPage "108648" @default.
- W4295136348 startingPage "108648" @default.
- W4295136348 abstract "As a kind of user-generated information, online reviews contain customers’ preferences for different aspects of hotels, which not only influence customers’ booking decisions but also help hotel managers to improve service quality of hotels timely. The key of deriving customers’ preferences from hotels’ online reviews is to identify fine-grained sentiment towards hotel attributes. In general, fine-grained sentiment analysis involves multiple fundamental tasks such as sentiment element extraction, aspect-opinion pair (i.e., AOP) identification and sentiment orientation analysis. However, existing fine-grained sentiment analysis methods cannot efficiently identify AOPs, especially when dealing with Chinese reviews. To this end, we construct an improved convolutional neural network (i.e., CNN) model, which can comprehensively utilize unstructured features and structured features, to improve the performance of AOP identification. We further propose a refined fine-grained sentiment analysis methodology to calculate accurate customer sentiment intensity value for each evaluated aspect rather than positive or negative sentiment, integrated with aspect term clustering algorithm, to identify customers’ specific preferences for different hotel attributes. Finally, to illustrate the reasonability and advantages of the proposed methodology, we conduct an empirical study with hotels’ online reviews crawled from Ctrip.com. Empirical results indicate that our proposed method can indeed improve the performance of AOP identification, and can effectively identify customer preferences from hotels’ online reviews. Furthermore, we find that customers show different preferences for different hotel attributes, and these vary across the types of customers." @default.
- W4295136348 created "2022-09-11" @default.
- W4295136348 creator A5017947172 @default.
- W4295136348 creator A5051650294 @default.
- W4295136348 creator A5080689830 @default.
- W4295136348 creator A5082384082 @default.
- W4295136348 date "2022-10-01" @default.
- W4295136348 modified "2023-10-15" @default.
- W4295136348 title "Customer preference identification from hotel online reviews: A neural network based fine-grained sentiment analysis" @default.
- W4295136348 cites W1852562626 @default.
- W4295136348 cites W1969240017 @default.
- W4295136348 cites W1992777957 @default.
- W4295136348 cites W2031998113 @default.
- W4295136348 cites W2037083943 @default.
- W4295136348 cites W2056966810 @default.
- W4295136348 cites W2159457224 @default.
- W4295136348 cites W2167181457 @default.
- W4295136348 cites W2253519362 @default.
- W4295136348 cites W2300796873 @default.
- W4295136348 cites W2407064372 @default.
- W4295136348 cites W2509786381 @default.
- W4295136348 cites W2559888170 @default.
- W4295136348 cites W2583503161 @default.
- W4295136348 cites W2606462105 @default.
- W4295136348 cites W2606788537 @default.
- W4295136348 cites W2741254516 @default.
- W4295136348 cites W2768505907 @default.
- W4295136348 cites W2782536238 @default.
- W4295136348 cites W2793903662 @default.
- W4295136348 cites W2894196255 @default.
- W4295136348 cites W2906511474 @default.
- W4295136348 cites W2911576302 @default.
- W4295136348 cites W2927128228 @default.
- W4295136348 cites W2963788533 @default.
- W4295136348 cites W2967347601 @default.
- W4295136348 cites W2972789371 @default.
- W4295136348 cites W2980928138 @default.
- W4295136348 cites W2987410285 @default.
- W4295136348 cites W3015143680 @default.
- W4295136348 cites W3015409196 @default.
- W4295136348 cites W3023022844 @default.
- W4295136348 cites W3023158727 @default.
- W4295136348 cites W3025723572 @default.
- W4295136348 cites W3033683242 @default.
- W4295136348 cites W3034156679 @default.
- W4295136348 cites W3043439940 @default.
- W4295136348 cites W3102295886 @default.
- W4295136348 cites W3134358032 @default.
- W4295136348 cites W3155469659 @default.
- W4295136348 cites W3161928224 @default.
- W4295136348 cites W3164173200 @default.
- W4295136348 cites W3173452903 @default.
- W4295136348 cites W3188974962 @default.
- W4295136348 cites W3199193989 @default.
- W4295136348 cites W4220764251 @default.
- W4295136348 cites W4247977950 @default.
- W4295136348 cites W568438413 @default.
- W4295136348 doi "https://doi.org/10.1016/j.cie.2022.108648" @default.
- W4295136348 hasPublicationYear "2022" @default.
- W4295136348 type Work @default.
- W4295136348 citedByCount "7" @default.
- W4295136348 countsByYear W42951363482022 @default.
- W4295136348 countsByYear W42951363482023 @default.
- W4295136348 crossrefType "journal-article" @default.
- W4295136348 hasAuthorship W4295136348A5017947172 @default.
- W4295136348 hasAuthorship W4295136348A5051650294 @default.
- W4295136348 hasAuthorship W4295136348A5080689830 @default.
- W4295136348 hasAuthorship W4295136348A5082384082 @default.
- W4295136348 hasConcept C116834253 @default.
- W4295136348 hasConcept C144133560 @default.
- W4295136348 hasConcept C154945302 @default.
- W4295136348 hasConcept C162324750 @default.
- W4295136348 hasConcept C162853370 @default.
- W4295136348 hasConcept C175444787 @default.
- W4295136348 hasConcept C199360897 @default.
- W4295136348 hasConcept C23123220 @default.
- W4295136348 hasConcept C2522767166 @default.
- W4295136348 hasConcept C26517878 @default.
- W4295136348 hasConcept C2780378061 @default.
- W4295136348 hasConcept C2780801425 @default.
- W4295136348 hasConcept C2781249084 @default.
- W4295136348 hasConcept C38652104 @default.
- W4295136348 hasConcept C41008148 @default.
- W4295136348 hasConcept C59822182 @default.
- W4295136348 hasConcept C66402592 @default.
- W4295136348 hasConcept C73555534 @default.
- W4295136348 hasConcept C81363708 @default.
- W4295136348 hasConcept C86803240 @default.
- W4295136348 hasConceptScore W4295136348C116834253 @default.
- W4295136348 hasConceptScore W4295136348C144133560 @default.
- W4295136348 hasConceptScore W4295136348C154945302 @default.
- W4295136348 hasConceptScore W4295136348C162324750 @default.
- W4295136348 hasConceptScore W4295136348C162853370 @default.
- W4295136348 hasConceptScore W4295136348C175444787 @default.
- W4295136348 hasConceptScore W4295136348C199360897 @default.
- W4295136348 hasConceptScore W4295136348C23123220 @default.
- W4295136348 hasConceptScore W4295136348C2522767166 @default.
- W4295136348 hasConceptScore W4295136348C26517878 @default.